
www.manaraa.com

Wayne State University

Wayne State University Dissertations

1-1-2014

Energy Efficiency Analysis And Optimization For
Mobile Platforms
Grace Metri
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Metri, Grace, "Energy Efficiency Analysis And Optimization For Mobile Platforms" (2014). Wayne State University Dissertations. Paper
970.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/970?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F970&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

ENERGY EFFICIENCY ANALYSIS AND
OPTIMIZATION FOR MOBILE PLATFORMS

by

GRACE CAMILLE METRI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2014

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

www.manaraa.com

c© COPYRIGHT BY

GRACE METRI

2014

ALL RIGHTS RESERVED

www.manaraa.com

DEDICATION

To my beloved daughter, Katherine

and

To my parents, Camil and Rose

For allowing me to dream with no limits and teaching me to be persistent and to

always aim higher; And most importantly, for their unwavering love and support.

ii

www.manaraa.com

ACKNOWLEDGMENTS

I am humbled by the large number of people who have directly or indirectly helped me

reach my goal of completing my Ph.D. dissertation. First of all, I would like to thank

my academic advisor Dr. Monica Brockmeyer who started mentoring me when I was

still an undergraduate student. Meeting her was a life-changing event. She is the one

who encouraged me to join the graduate program and provided support throughout

my academic journey. Her dedication, guidance, faith in me, and understanding were

crucial for attaining my goals, and for that, I am forever grateful.

I would also like to thank my co-advisor, Dr. Weisong Shi. I also knew him as

an undergraduate student and attended several courses taught by him. I was always

impressed by his level of knowledge and his style of fostering a researcher mentality,

all of which are great qualities of an advisor. His support, advice, and flexibility were

very important to my progress in the graduate program. My gratitude for all the

time an energy he invested in me is beyond words.

I would also like to thank Dr. Daniel Grosu and Dr. Nathan Fisher, from the

Computer Science Department at Wayne State, for serving as committee members

during my prospectus and dissertation defense and providing me with excellent de-

tailed feedback on my work and dissertation. I would also like to thank my external

committee member from Intel, Dr. Kyung Hee Kim, for her great support, encour-

agement, flexibility, and feedback on my dissertation projects.

I am happy that I was part of the Department of Computer Science at Wayne State

for so many years. I am thankful for all the staff and faculty members. In particular,

I am very grateful for the help and support that I received from Dr. Seymour Wolfson

and Dr. Farshad Fotouhi when they were both the department chairs. They always

had their door open and provided help and support when needed. I am also proud to

be part of the MIST group and work among some of the smartest and most driven

Ph.D. and Masters students.
iii

www.manaraa.com

In addition, I have been very fortunate to work for Intel for the past couple of

years. I was exposed to some of the best cutting-edge technology and tools which

made this dissertation possible. I am particularly thankful for my mentor, Abhishek

Agrawal. The impact that Abhishek had on my research and career development

is priceless. Words simply cannot express my gratitude for all the time he spent

mentoring me and supporting me to achieve my research goals. I would also like

to thank my colleagues and my current manager, Karla Callaghan. Her support,

encouragement, and flexibility throughout the past few months were the driving force

behind completing the last milestone of my dissertation.

I also want to thank my friends for their support and love. In particular, I am

very thankful for Sonia Haiduc. I don’t know what I would have done without your

continuous support and occasional surprises. My dear Lily Lee, thank you for en-

couraging me to follow my dreams. Paul Janiczek, thank you for helping me discover

Detroit and all its hidden authentic restaurants and, of course, helping me with all the

logistics in preparation for my defense. Talia Selitsky, Katie Kunz, Claudia Valdes,

Melissa Guinn, Michele Donato, Laura Moreno, Radu Vanciu, and Cristina Mitrea

thank you for being there whenever I needed a break. You are all true friends.

Finally, I am blessed by my great family. Everyone had an impact, one way or

another, on my life. First, and foremost, my grandmother teta Daad Nohra. All I can

say is that I wish someday, I will be half the great woman you are. My dear parents,

Camil and Rose, I thank you for all your sacrifices, help, support, encouragement, and

love. My siblings, Joanne, Ralph, and Jeffery, thank you for being my best friends

despite all the distance. My aunt, Liliane Nohra, thank you for inspiring me when I

was still a teenager to be just like you when I grow up. Throughout my journey, you

provided unlimited support and encouragement. You read all my research papers and

provided feedback even though the subject of my research is completely foreign to

you. So, thank you for all your efforts. My aunt, Maggie Nohra, thanks for all your

love and support since I moved to the states. My cousins, Dr. Mikhail Mitri and Fr.

iv

www.manaraa.com

Antonio Feghali thank you for listening to my occasional complaints and extending

your full support and love. Elie Samaha, for helping me raise our beautiful daughter,

Katherine. Finally, I am mostly thankful for you, Katherine. We did it, dear!! I think

we equally sacrificed since the beginning of this journey. You gladly accompanied me

to the lab or meetings on many occasions instead of going to play dates and you made

sure to help me with numerous papers I worked on by giving them life through your

colorful drawings. I love you!

v

www.manaraa.com

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . xi

List of Tables . xxii

Chapter 1: Introduction . 1

1.1 Research Goals . 2

1.2 Our Approach and Contribution . 5

1.3 Organization . 8

Chapter 2: Background . 10

2.1 Power versus Energy . 10

2.2 Metrics Affecting Power Consumption of Processors 11

2.2.1 Processor Idle Sleep States . 11

2.2.2 Processor Performance States 12

2.3 Energy Overhead Analysis of Mobile Devices 12

2.3.1 Application Layer . 12

2.3.2 Management Layer . 13

2.3.3 Hardware Layer . 13

2.4 Related Work . 16

vi

www.manaraa.com

2.4.1 Power Profiling of Hardware Components using Hardware-Based
Methods . 16

2.4.2 Power Profiling of Hardware Components using Software-Based

Methods . 17

2.4.3 Energy and Power Profiling of Mobile Applications 18

2.4.4 Increasing the Energy Efficiency of Hardware Components . . 20

2.4.5 Increasing the Energy Efficiency of Mobile Applications 21

2.5 Conclusion . 23

Chapter 3: SoftPowerMon: A Power-Profiling Tool for All Android
Mobile Devices . 24

3.1 Introduction . 24

3.1.1 Motivation . 25

3.1.2 Contribution . 25

3.1.3 Organization . 26

3.2 Power Profiling Techniques Used to Determine Energy Efficiency of
Applications on Android Devices . 26

3.2.1 Processor Idle Sleep States . 27

3.3 Software Power Monitor Tool (SoftPowerMon) 29

3.3.1 Advantages of SoftPowerMon 30

3.4 Case Studies . 33

3.4.1 Smartphones: Samsung S3 and Samsung Galaxy Nexus 3 . . . 33

3.4.2 Tablet: Motorola XOOM . 38

3.5 Performance Analysis of SoftPowerMon 39

3.6 SoftPowerMon - The Android App 42

3.6.1 Description of SoftPowerMon - The Android App 43

3.7 Conclusion . 43

Chapter 4: Energy-Efficiency Comparison of Mobile Platforms: A
Quantitative Approach . 53

4.1 Introduction . 53
vii

www.manaraa.com

4.1.1 Goals . 54

4.1.2 Contribution . 54

4.1.3 Organization . 60

4.2 Mobile Device Operating Systems . 60

4.2.1 Windows 8 and Beyond . 62

4.2.2 iOS . 63

4.2.3 Android . 64

4.3 Top 10 Energy Efficient Programming Rules 66

4.4 Quantitative Analysis Approach . 69

4.4.1 Windows . 69

4.4.2 Android . 72

4.4.3 iOS . 73

4.5 Case Studies . 74

4.5.1 Browsers Scenario . 75

4.5.2 Video Streaming Scenario . 86

4.5.3 Music Streaming Scenario . 97

4.5.4 Map Scenario . 106

4.5.5 Video Chatting Scenario . 111

4.5.6 Cloud Storage Scenario . 118

4.5.7 Social Networking Scenario . 127

4.5.8 E-mail Scenario . 136

4.6 Implications . 143

4.7 Related Work . 145

4.8 Conclusion . 146

Chapter 5: What is Eating Up Battery Life on my Smartphone? A
Case Study . 147

5.1 Introduction . 147

5.1.1 Motivation . 148

viii

www.manaraa.com

5.1.2 Contribution . 148

5.1.3 Organization . 149

5.2 Smartphone Usage Models . 149

5.3 The Impact of Background Applications and Network Connection Type
on iOS Smartphones (iPhone) . 150

5.3.1 Experimental Setup and Methodology 150

5.3.2 Experimental Results . 151

5.4 The Impact of Background Applications and Network Connection Type
on Android Smartphones (Samsung S3) 158

5.4.1 Experimental Setup and Methodology 158

5.4.2 Experimental Results . 159

5.5 Optimization Techniques . 160

5.6 Conclusion . 164

Chapter 6: BatteryExtender: An Adaptive User-Guided Tool for
Power Management of Mobile Devices 166

6.1 Introduction . 166

6.1.1 Organization . 167

6.2 Related Work . 168

6.3 Motivation . 173

6.4 BatteryExtender Design . 175

6.4.1 BatteryExtender Objectives 175

6.4.2 Design . 176

6.5 BatteryExtender implementation . 178

6.5.1 Windows Device Power-Management Analysis 179

6.5.2 Analysis of Collection Granularity of Battery Life 185

6.5.3 Implementation . 188

6.6 Experimental Analysis . 198

6.6.1 Calibration Results . 200

6.6.2 Download Scenario . 200
ix

www.manaraa.com

6.6.3 Video Playback Scenario . 203

6.6.4 Video Streaming Scenario . 204

6.6.5 Other Case Studies . 206

6.6.6 Validating Energy Profiling of Applications 209

6.7 Conclusion and Future Work . 210

Chapter 7: Energy Efficiency of System-on-Chip Devices 212

7.1 Introduction . 212

7.1.1 Contribution . 213

7.1.2 Organization . 214

7.2 Overview of System-on-Chip . 214

7.2.1 Challenges of SoCs . 216

7.3 The Art of Offloading . 217

7.3.1 Advantages of Offloading . 218

7.4 Profiling Methodology . 220

7.5 Experimental Results . 222

7.5.1 Case Study 1: Evaluation of Graphics IP Unit 222

7.5.2 Case Study 2: Evaluation of Audio IP Unit 224

7.6 Analysis and Conclusion . 227

Chapter 8: Conclusion and Future Work 230

References . 232

Abstract . 244

Autobiographical Statement . 246

x

www.manaraa.com

LIST OF FIGURES

Figure 1.1 Mobile devices architecture. 3

Figure 3.1 Comparing percentage of time in idle states residency for Sam-
sung S3. 35

Figure 3.2 Comparing percentage of time in idle states residency for Nexus
3. 36

Figure 3.3 Comparing number of idle states transitions to WFI per second
for Samsung S3. 36

Figure 3.4 Comparing number of idle states transitions to WFI per second
for Nexus 3. 37

Figure 3.5 Comparing percentage of time in power performance states res-
idency for Samsung S3 and Nexus 3. 37

Figure 3.6 Percentage of time in idle states residency for Motorola XOOM. 39

Figure 3.7 Comparing number of transitions to idle states per second for
Motorola XOOM. 39

Figure 3.8 Comparing percentage of time in power performance states for
Motorola XOOM. 40

Figure 3.9 Comparing percentage in C-States when running SoftPower-
Mon, PowerTutor, and SystemPanelPro during NenaMark2 bench-
mark. 42

Figure 3.10 Device info screenshot. 44

Figure 3.11 Power tests screenshot. 45

Figure 3.12 C-states tests results. 46

Figure 3.13 P-states tests results. 47

Figure 3.14 Core online test results screenshot. 48

Figure 3.15 C-states results graph. 49

xi

www.manaraa.com

Figure 3.16 P-states results graph. 50

Figure 3.17 Settings screenshot. 51

Figure 4.1 Mobile and tablet worldwide market share of operating system
usage for November 2013. Net Market Share collects browser
data from a worldwide network of over 40,000 websites. 59

Figure 4.2 Gartner forecast of mobile devices by open operating system,
worldwide, 2014-2016. 60

Figure 4.3 Comparison of the impact of multithreading on package active
duration. 67

Figure 4.4 Energy consumed by Surface 2 Pro during browsers scenario. . 75

Figure 4.5 Idle sleep states percentage per core collected on Surface 2 Pro
during browsers scenario. 76

Figure 4.6 Package idle sleep states percentage collected on Surface 2 Pro
during browsers scenario. 76

Figure 4.7 Core frequency distribution collected on Surface 2 Pro during
browsers scenario. 77

Figure 4.8 Total hit count and busy duration in milliseconds collected on
Surface 2 Pro during browsers scenario. 77

Figure 4.9 Average package and core wakeups per second collected on Sur-
face 2 Pro during browsers scenario. 78

Figure 4.10 Percentage of time spent in each timer resolution interval. . . 78

Figure 4.11 Energy level collected on iPad Air 2 during browsers scenario
using Instrument. 80

Figure 4.12 Total CPU activity percentage collected on iPad Air 2 during
browsers scenario using Instrument. 80

Figure 4.13 Graphics activity percentage collected on iPad Air 2 during
browsers scenario using Instrument. 81

Figure 4.14 Percentage of time spent in each frequency collected on Nexus
7 during browsers scenario using PowerMon. 82

Figure 4.15 Percentage of time spent in each C-State per core collected on
Nexus 7 during browsers scenario using PowerMon. 82

Figure 4.16 Percentage of CPU utilization collected on Nexus 7 during
browser scenario using Trepn. 83

xii

www.manaraa.com

Figure 4.17 Energy consumed by Surface 2 Pro during video streaming sce-
nario. 86

Figure 4.18 Idle sleep states percentage per core collected on Surface 2 Pro
during video streaming scenario. 86

Figure 4.19 Package idle sleep states percentage collected on Surface 2 Pro
during video streaming scenario. 87

Figure 4.20 Core frequency distribution collected on Surface 2 Pro during
video streaming scenario. 87

Figure 4.21 Total hit count and total active duration in milliseconds col-
lected on Surface 2 Pro during video streaming scenario. . . . 88

Figure 4.22 Average package and core wakeups per seconds collected on
Surface 2 Pro during video streaming scenario. 88

Figure 4.23 Percentage of time spent in each timer resolution interval. . . 88

Figure 4.24 Energy level collected on iPad Air 2 during video streaming
scenario using Instrument. 90

Figure 4.25 Total CPU activity percentage collected on iPad Air 2 during
video streaming scenario using Instrument. 90

Figure 4.26 Graphics activity percentage collected on iPad Air 2 during
video streaming scenario using Instrument. 91

Figure 4.27 Percentage of CPU utilization collected on Nexus 7 during
video streaming scenario using Trepn. 93

Figure 4.28 Percentage of GPU load collected on Nexus 7 during video
streaming scenario using Trepn. 93

Figure 4.29 GPU frequency collected on Nexus 7 during video streaming
scenario using Trepn. 93

Figure 4.30 Percentage of time spent in each frequency collected on Nexus
7 during video streaming scenario using PowerMon. 94

Figure 4.31 Percentage of time spent in each C-State per core collected on
Nexus 7 during video streaming scenario using PowerMon. . . 94

Figure 4.32 Energy consumed by Surface 2 Pro during music streaming
scenario. 96

Figure 4.33 Idle sleep states percentage per core collected on Surface 2 Pro
during music streaming scenario. 97

Figure 4.34 Package idle sleep states percentage collected on Surface 2 Pro
during music streaming scenario. 97

xiii

www.manaraa.com

Figure 4.35 Core frequency distribution collected on Surface 2 Pro during
music streaming scenario. 98

Figure 4.36 Total hit count and busy duration in milliseconds collected on
Surface 2 Pro during music streaming scenario. 98

Figure 4.37 Average package and core wake-ups per seconds collected on
Surface 2 Pro during music streaming scenario. 99

Figure 4.38 Percentage of time spent in each timer resolution interval. . . 99

Figure 4.39 Energy level collected on iPad Air 2 during music streaming
scenario using Instrument. 100

Figure 4.40 Total CPU activity percentage collected on iPad Air 2 during
music streaming scenario using Instrument. 101

Figure 4.41 Graphics activity percentage collected on iPad Air 2 during
music scenario using Instrument. 101

Figure 4.42 Percentage of time spent in each frequency collected on Nexus
7 during Music Streaming scenario using PowerMon. 102

Figure 4.43 Percentage of time spent in each C-State per core collected on
Nexus 7 during music streaming scenario using PowerMon. . . 103

Figure 4.44 Percentage of CPU utilization collected on Nexus 7 during mu-
sic streaming scenario using Trepn. 103

Figure 4.45 Energy level collected on iPad Air 2 during map scenario using
Instrument. 106

Figure 4.46 Total CPU activity percentage collected on iPad Air 2 during
map scenario using Instrument. 106

Figure 4.47 Graphics activity percentage collected on iPad Air 2 during
map scenario using Instrument. 106

Figure 4.48 Percentage of time spent in each frequency collected on Nexus
7 during Map scenario using PowerMon. 107

Figure 4.49 Percentage of time spent in each C-State per core collected on
Nexus 7 during Map scenario using PowerMon. 108

Figure 4.50 Percentage of CPU utilization collected on Nexus 7 during map
scenario using Trepn. 108

Figure 4.51 Energy consumed by Surface 2 Pro during video chatting sce-
nario. 110

Figure 4.52 Idle sleep states percentage per core collected on Surface 2 Pro
during video chatting scenario. 111

xiv

www.manaraa.com

Figure 4.53 Package idle sleep states percentage collected on Surface 2 Pro
during video chatting scenario. 111

Figure 4.54 Core frequency distribution collected on Surface 2 Pro during
video chatting scenario. 111

Figure 4.55 Average package and core wake-ups per seconds collected on
Surface 2 Pro during video chatting scenario. 112

Figure 4.56 Energy level collected on iPad Air 2 during video chatting sce-
nario using Instrument. 113

Figure 4.57 Total CPU activity percentage collected on iPad Air 2 during
video chatting scenario using Instrument. 113

Figure 4.58 Percentage of CPU utilization collected on Nexus 7 during
browser scenario using Trepn. 114

Figure 4.59 Percentage of time spent in each frequency collected on Nexus
7 during video chatting scenario using PowerMon. 114

Figure 4.60 Percentage of time spent in each C-State per core collected on
Nexus 7 during video chatting scenario using PowerMon. . . . 115

Figure 4.61 Energy consumed by Surface 2 Pro during cloud storage scenario. 117

Figure 4.62 Idle sleep states percentage per core collected on Surface 2 Pro
during cloud storage scenario. 117

Figure 4.63 Package idle sleep states percentage collected on Surface 2 Pro
during cloud storage scenario. 118

Figure 4.64 Core frequency distribution collected on Surface 2 Pro during
cloud storage scenario. 118

Figure 4.65 Total hit count and busy duration in milliseconds collected on
Surface 2 Pro during cloud storage scenario. 119

Figure 4.66 Average package and core wake-ups per seconds collected on
Surface 2 Pro during cloud storage scenario. 119

Figure 4.67 Percentage of time spent in each timer resolution interval. . . 119

Figure 4.68 Energy level collected on iPad Air 2 during cloud storage sce-
nario using Instrument. 121

Figure 4.69 Total CPU activity percentage collected on iPad Air 2 during
cloud storage scenario using Instrument. 121

Figure 4.70 Graphics activity percentage collected on iPad Air 2 during
cloud storage scenario using Instrument. 122

xv

www.manaraa.com

Figure 4.71 Percentage of time spent in each frequency collected on Nexus
7 during cloud storage scenario using PowerMon. 123

Figure 4.72 Percentage of time spent in each C-State per core collected on
Nexus 7 during cloud storage scenario using PowerMon. . . . 124

Figure 4.73 Energy consumed by Surface 2 Pro during social networking
scenario. 127

Figure 4.74 Idle sleep states percentage per core collected on Surface 2 Pro
during social networking scenario. 127

Figure 4.75 Package idle sleep States percentage collected on Surface 2 Pro
during social networking scenario. 128

Figure 4.76 Core frequency distribution collected on Surface 2 Pro during
social networking scenario. 128

Figure 4.77 Total hit count and busy duration in milliseconds collected on
Surface 2 Pro during social networking scenario. 129

Figure 4.78 Average package and core wake-ups per seconds collected on
Surface 2 Pro during social networking scenario. 129

Figure 4.79 Percentage of time spent in each timer resolution. 129

Figure 4.80 Energy level collected on iPad Air 2 during social networking
scenario using Instrument. 131

Figure 4.81 Total CPU activity percentage collected on iPad Air 2 during
social networking scenario using Instrument. 131

Figure 4.82 Graphics activity percentage collected on iPad Air 2 during
social networking scenario using Instrument. 131

Figure 4.83 Percentage of time spent in each frequency collected on Nexus
7 during social networking scenario using PowerMon. 133

Figure 4.84 Percentage of time spent in each C-State per core collected on
Nexus 7 during social networking scenario using PowerMon. . 133

Figure 4.85 Energy consumed by Surface 2 Pro during e-mail scenario. . . 135

Figure 4.86 Idle sleep states percentage per core collected on Surface 2 Pro
during e-mail scenario. 136

Figure 4.87 Package idle sleep states percentage collected on Surface 2 Pro
during e-mail scenario. 136

Figure 4.88 Core frequency distribution collected on Surface 2 Pro during
e-mail scenario. 137

xvi

www.manaraa.com

Figure 4.89 Total hit count and busy duration in milliseconds collected on
Surface 2 Pro during e-mail scenario. 137

Figure 4.90 Average package and core wake-ups per seconds collected on
Surface 2 Pro during e-mail scenario. 137

Figure 4.91 Energy level collected on iPad Air 2 during e-mail scenario
using Instrument. 138

Figure 4.92 Percentage of CPU utilization collected on Nexus 7 during e-
mail scenario using Trepn. 139

Figure 4.93 Percentage of time spent in each frequency collected on Nexus
7 during e-mail scenario using PowerMon. 140

Figure 4.94 Percentage of time spent in each C-State per core collected on
Nexus 7 during e-mail scenario using PowerMon. 140

Figure 5.1 Sleep/wake status of iPhone using Wi-Fi. 153

Figure 5.2 Sleep/wake status of iPhone using 3G. 153

Figure 5.3 Energy usage of iPhone using Wi-Fi. 153

Figure 5.4 Energy usage of iPhone using 3G. 154

Figure 5.5 Percentage of CPU activity of iPhone using Wi-Fi. 154

Figure 5.6 Percentage of CPU activity of iPhone using 3G. 154

Figure 5.7 Network bytes in and out of iPhone using Wi-Fi. 155

Figure 5.8 Network bytes in and out of iPhone using Wi-Fi excluding
background streaming apps test results. 155

Figure 5.9 Network bytes in and out of iPhone using 3G. 155

Figure 5.10 Network bytes in and out of iPhone using 3G, excluding back-
ground streaming apps test results. 156

Figure 5.11 Viber message notification. 157

Figure 5.12 Network bytes in and out of Android using Wi-Fi during test 1. 158

Figure 5.13 Network bytes in and out of Android using Wi-Fi during test 2. 159

Figure 5.14 Network bytes in and out of Android using Wi-Fi during test 5. 159

Figure 5.15 Network bytes in and out of Android using 3G during test 1. . 159

Figure 5.16 Network bytes in and out of Android using 3G during test 2. . 160

Figure 5.17 Network bytes in and out of Android using 3G during test 5. . 160

xvii

www.manaraa.com

Figure 5.18 Percentage of CPU usage of Android using Wi-Fi. 160

Figure 5.19 Percentage of CPU usage of Android using 3G. 161

Figure 6.1 Components of mobile devices. 173

Figure 6.2 BatteryExtender architecture. 176

Figure 6.3 Relationship between battery capacity and remaining battery
life over time at a 3-second interval on Surface 2 Pro tablet. . 186

Figure 6.4 Relationship between battery capacity and remaining battery
life over time at a 2-minute interval on Dell convertible. . . . 186

Figure 6.5 One core is active at each timestamp, resulting in an active
package. 193

Figure 6.6 Two cores are active at timestamp 0, resulting in an active
package, and are both idle at timestamp 1, resulting in an idle
package. 193

Figure 6.7 Battery capacity over time during download scenario for Dell
Convertible. 200

Figure 6.8 Battery capacity over time during download scenario for Sur-
face 2 Pro. 201

Figure 6.9 Battery capacity over time during video playback scenario for
Dell Convertible. 203

Figure 6.10 Battery capacity over time during video playback scenario for
Surface 2 Pro. 204

Figure 6.11 Battery capacity over time during video streaming scenario for
Dell Convertible. 205

Figure 6.12 Battery capacity over time during video streaming scenario for
Surface 2 Pro. 205

Figure 6.13 Battery capacity over time during touchscreen vs. keyboard
test cases for Dell Convertible. 207

Figure 6.14 Battery capacity over time during effect of landscape change
for Surface 2 Pro. 208

Figure 7.1 Medfield SoC Block Diagram - Penwell SOC (Intel Hi-K 32 nm
Process Technology . 214

Figure 7.2 Medfield thermal image during audio playback without offload-
ing. 217

xviii

www.manaraa.com

Figure 7.3 Medfield thermal image during audio playback. 218

Figure 7.4 Thermal scale. 218

Figure 7.5 Power instrument flow diagram. 219

Figure 7.6 Variance of different OS configurations. 220

Figure 7.7 Pseudocode for software and hardware offloading. 221

Figure 7.8 GPUView with empty queue. 222

Figure 7.9 CPU activities during playback. 223

Figure 7.10 Impact of GPU offload on CPU. 223

Figure 7.11 Power savings real-time for GPU offload. 223

Figure 7.12 CPU/GPU concurrency and overlap. 224

Figure 7.13 Microsoft audio block diagram. 226

Figure 7.14 Error graph on low-power SoC savings. 227

Figure 7.15 Overtime view for audio activities. 227

Figure 7.16 Delta of power savings achieved by offloading. 227

xix

www.manaraa.com

LIST OF TABLES

Table 3.1 Benchmark description. 31

Table 3.2 Benchmarks DynTicks events per second on Samsung S3. . . . 36

Table 3.3 Comparing percentage in P-states during NenaMark2 benchmark 41

Table 4.1 List of observations and implications based on the case studies
comparing the energy efficiency of applications on three mobile
operating systems: Windows 8 and beyond, iOS, and Android. 54

Table 4.2 List of devices . 67

Table 4.3 List of apps and corresponding version per scenario 73

Table 4.4 Power metrics collected on Nexus 7 during browser scenario
using Trepn. 83

Table 4.5 Cross-platform browsers energy-efficiency ranking. 84

Table 4.6 Power metrics collected on Nexus 7 during video streaming
scenario using Trepn. 92

Table 4.7 Cross platform video streaming apps energy efficiency ranking. 95

Table 4.8 Power metrics collected on Nexus 7 during music streaming
scenario using Trepn. 104

Table 4.9 Cross platform music streaming apps energy efficiency ranking. 104

Table 4.10 Power metrics collected on Nexus 7 during map scenario using
Trepn. 109

Table 4.11 Cross-platform map apps energy efficiency ranking. 109

Table 4.12 Power metrics collected on Nexus 7 during video chatting sce-
nario using Trepn. 115

Table 4.13 Cross-platform video chatting energy efficiency ranking 116

Table 4.14 Power metrics collected on Nexus 7 during cloud storage sce-
nario using Trepn. 124

xx

www.manaraa.com

Table 4.15 Cross-platform cloud storage energy efficiency ranking. 125

Table 4.16 Power metrics collected on Nexus 7 during social networking
scenario using Trepn. 134

Table 4.17 Cross-platform social networking energy efficiency ranking. . . 134

Table 4.18 Power metrics collected on Nexus 7 during e-mail scenario using
Trepn. 141

Table 4.19 Cross-platform e-mail clients energy efficiency ranking. 141

Table 5.1 Types of Tests . 150

Table 5.2 Types of Tests . 151

Table 6.1 Dell Ultrabook Convertible specifications. 178

Table 6.2 Microsoft Surface 2 Pro Tablet specifications. 179

Table 6.3 Extra device D-States during idle and video playback on Win-
dows Surface 2 Pro compared to the scenario where we disable
10 devices. We highlight in green the devices that switched
from active to low device power state when comparing idle to
video playback and we highlight in red the devices that should
have switched from active to low device power state when com-
paring idle to video playback due to the long inactive duration. 182

Table 6.4 Calibration results for Dell Convertible. 198

Table 6.5 Calibration results for Surface 2 Pro. 199

Table 6.6 Disabled devices and display settings associated with expected
capacity savings during download scenario for Dell Convertible. 201

Table 6.7 Disabled devices and display settings associated with expected
capacity savings during download scenario for Surface 2 Pro. . 202

Table 6.8 Disabled devices and display settings associated with expected
capacity savings during video playback scenario for Dell Con-
vertible. 203

Table 6.9 Disabled devices and display settings associated with expected
capacity savings during during video playback scenario for Sur-
face 2 Pro. 204

Table 6.10 Disabled devices and display settings associated with expected
capacity savings during video streaming scenario for Dell Con-
vertible. 205

xxi

www.manaraa.com

Table 6.11 Disabled devices and display settings associated with expected
capacity savings during during video playback scenario for Sur-
face 2 Pro. 206

Table 7.1 Estimation of power variance using software- and hardware-
based tools. 225

xxii

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

The introduction of mobile devices changed the landscape of computing. Gradually,

these mobile devices are replacing traditional personal computers (PCs) to become the

device of choice for entertainment, connectivity, and productivity. Everyday users use

their mobile devices daily to play games, pay a bill, or make a phone call. Businesses

are using them to receive payments or to enable consumers to place orders in cafes

and restaurants.

There are currently at least 45.5 million people in the United States who own

a mobile device, and that number is expected to increase to 1.5 billion by 2015

[80]. Users of mobile devices expect and mandate that their mobile devices have

maximized performance while consuming minimal possible power. Users don’t care

if the hardware is optimized for maximum energy efficiency or if the software is

maximized for energy efficiency. When they evaluate their devices, they look at the

overall battery life of their devices. However, due to the battery size constraints,

the amount of energy stored in these devices is limited and is only growing by 5%

annually [73]. As a result, we need to analyze the energy efficiency of these mobile

devices and use the lessons learned in order to optimize the energy consumption and

thus increase their energy efficiency.

Hardware manufacturers came a long way into reducing the power consumption

of their platforms, but optimization of energy efficiency will not be attained unless

applications (apps) that are running on these platforms are optimized in terms of

energy efficiency as well. As a matter of fact, any mobile platform consists of three

layers: the application layer, the management layer, and the hardware layer, as shown

in Figure 1.1.

• The Application Layer: This layer consists of the applications running on a

platform. These applications can impact the power consumption of the device

www.manaraa.com

2

based on their resource utilization.

• The Hardware Layer: This layer consists of a collection of physical resources

included in the platform such as display, Wi-Fi radio, sensors, and cameras.

The number of physical resources and their power state affect the overall power

consumption of the device.

• The Management Layer: This layer contains the algorithms and policies

that perform the resource allocation required by the application layer to the

hardware layer. It also performs power management of the physical layer by

changing the power states of each physical resource.

Because the mobile device is a single unit, in order to achieve optimized energy

efficiency, all three layers must be optimized in terms of energy efficiency, because

one misbehaving layer can affect the entire unit. They need to work in sync as a

single unit to achieve this goal. This means that the application should be created

using energy-aware algorithms in order to minimize the use of physical resources.

The hardware components should consume the least amount of possible power when

in use and be capable of switching their unused components to low-power states

(or maybe shutdown mode) when not in use, in addition to reducing the tail power

of components such as the tail power of Wi-Fi radio. The power management layer

should map the application tasks to the appropriate physical resource (e.g., allocation

to the appropriate intellectual property (IP) in terms of the power management layer

of SoCs). In addition, based on the workload of applications, it should change the

power states of physical components.

1.1 Research Goals

Our research goal is to analyze the energy efficiency of mobile devices.

Then, use the lessons learned from our analysis in order to increase the

www.manaraa.com

3

Figure 1.1: Mobile devices architecture.

energy efficiency of mobile devices.

Analysis of energy consumption of mobile devices is a very complicated process

but it is key to optimizing their energy efficiency. Without proper understanding of

how power is dissipated in a platform, we cannot increase its energy efficiency. That

means we need to have appropriate profiling tools to determine the power dissipation

of different physical components. In addition, we need to be capable of mapping

the power consumption behavior of physical resources to the execution behavior of

applications. Moreover, having extensive amount of power metrics collected without

full understanding of the cause and effect of the differences in power consumption

behavior and how one metric’s power consumption is affecting the power consump-

tion behavior of a different metric is ineffective to determine the causes of energy

inefficiencies. To this extent, we approached solving our research goals through the

following key directions:

1. Developing a tool in order to determine the behavior of power con-

sumption of the CPU with negligible overhead. In order to be able to

understand the power dissipation of physical components of mobile devices, we

need to develop tools which are capable of not simply providing total power

www.manaraa.com

4

consumption of a component, but the power consumption behavior. Since en-

ergy efficiency of a platform cannot be increased without understanding how

the application layer affects the physical layer, then by extracting the power

consumption behavior of the hardware and correlating it with the execution of

applications, we are enabled to determine effectiveness of the power manage-

ment layer of the platform and the energy inefficiencies of apps.

2. Providing techniques to increase the energy efficiency of apps. Since

the energy efficiency of mobile devices is highly dependent on the energy effi-

ciency of the running apps, it is critical for developers to be aware of techniques

to increase the energy efficiency of their apps. Our goal is to provide energy

efficiency development rules which need to be followed by app developers. In

addition, our goal is to find the gaps of why there are still many popular apps

that are energy inefficient. Finally, we want to demonstrate proper means for

developers to profile their apps and determine the causes of its inefficiency.

3. Determining energy consumption issues when smartphone devices are

in idle state and proposing optimization techniques. Smartphones are

usually idle for the majority of the battery life duration. However, they need to

remain connected to a network at all times in order to receive notifications and

updates. Since smartphones allow background applications to run during idle

time, our goal is to determine the impact of background applications, based on

their category, on the overall energy consumption of a smartphone in addition

to determining the impact of network connection type (3G versus Wi-Fi) on the

overall energy efficiency. By understanding the impact of background applica-

tions and network connection type on the energy efficiency of a smartphone,

we can provide recommendations in order to increase the energy efficiency of

smartphones at idle time.

4. Providing a tool to extend battery life on demand. Our goal is to enable

www.manaraa.com

5

users to extend battery life on demand for a specific duration until a particular

task is performed.

5. Analyzing power consumption behavior of Systems-on-Chips (SoCs)

and providing techniques in order to increase their energy efficiency.

Current mobile devices are using SoCs which contain in addition to the cores,

specialized custom engines. One of the advantages of these custom engines is

enabling the CPU to offload part of the execution to these specialized engines.

Our goal is to examine the impact of offloading tasks to the engines on the energy

efficiency of mobile devices. In addition, our goal is to highlight techniques to

optimize the SoCs from an energy efficiency perspective.

1.2 Our Approach and Contribution

In this section, we summarize our approach to accomplish our research goals and in

addition to the summary of our contribution.

1. Developing a tool in order to profile the power consumption of the

CPU. We developed SoftPowerMon, a power-profiling tool for Android mobile

devices. We created two flavors of the tool: one which runs on a host system

and the other one runs as a native app on the Android device. The tool can be

used to determine “why” a specific amount of power was consumed as opposed

to “how much.” It consumes negligible overhead and does not require flashing

of the kernel. One of the key advantages of this tool is that it can collect data

on any type of processor. By using SoftPowerMon, platform manufacturers

can strictly power profile the processor without taking into consideration any

other device component of the platform. Thus, they can determine the energy

efficiency of one processor compared to another. In addition, app developers can

use it in order to observe the impact of their apps on the energy efficiency of the

processor. In order to highlight the features and capabilities of SoftPowerMon,

www.manaraa.com

6

we provide case studies using smartphones and tablets. Using the case studies,

we were able to highlight the benefits of the tool. We present this tool in

Chapter 3. A paper describing this tool was published in the Proceedings of

the International Conference on Energy Aware Computing 2012 [71].

2. Providing techniques to increase the energy efficiency of apps. We

developed a tool called EnergyMeter which can collect the platform, package,

core, and GPU energy consumption on Windows platforms. Then we charac-

terized the mobile apps into eight categories: browsers, video streaming, music

streaming, maps, video chatting, social networking, and email services. Then,

for each mobile app category, we profiled the energy efficiency of app collection

on the three most popular operating systems: Windows, iOS, and Android, in

terms of: 1) same app categories on a single OS compared to other apps of

the same category and on the same OS. 2) Ranking the energy efficiency of

the same app on different OS. 3) Comparing the energy efficiency of the same

application if accessed using a native app or using a browser. Based on the

case studies, we derived a list of observations, causes, and implications. Finally,

we provided a list of the top 10 energy efficiency app development rules which

are recommended for app developers. We present this project in Chapter 4. A

paper containing a subset of our case studies has been submitted to the 5th

International Green Computing Conference (IGCC’14) and is currently under

review. The full report including raw data will be available online.

3. Determining what is eating up battery life on smartphone devices

when idle. In order to achieve this goal, we provide detailed case studies

on the two popular smartphone devices: an iPhone (iOS) and a Samsung S3

(Android). We observed the impact of background applications and network

connection type (Wi-Fi versus 3G) on the overall energy consumption of the

device. These case studies are particularly important because focus in literature

www.manaraa.com

7

has been on active workload on mobile devices. However, smartphones remain in

extended duration in idle state. Therefore, it is important to determine energy

inefficiencies due to background apps. In addition, through our case studies,

we were able to derive a list of optimization techniques which can extend the

battery life of smartphone devices. Finally, we showed that even though some

concepts are widely known to increase the energy efficiency of smartphones,

however, the techniques were not adopted by the two most popular platforms.

Thus, there is still room for improvement. We present this project in Chapter

5. A paper describing this project was published in the Proceedings of the

International Conference on Energy Aware Computing 2012 [72].

4. Providing a tool to extend battery life on demand. We developed Bat-

teryExtender, an adaptive user-guided tool for power management of mobile

devices. The tool enables users to reconfigure the device’s resources based on

the user’s workload requirement, similar to the principle of creating virtual

machines in cloud environments. The tool can predict the battery life sav-

ings based on the new configuration, in addition to predicting the impact of

running applications on the battery life. Through our experimental analysis,

BatteryExtender enabled users to decrease the energy consumption of mobile

devices between 10.03% and 20.21%, and in rare cases by up to 72.83%. The

accuracy rate ranged between 92.37% and 99.72%. We present this tool in

Chapter 6. A paper describing this tool was published at the 2014 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing (UbiComp

2014).

5. Analyzing power consumption behavior of Systems-on-Chips (SoCs)

and providing techniques in order to increase their energy efficiency.

In order to achieve this goal, we highlight the importance of offloading task

execution from the CPU to dedicated IP blocks by showing how it can be effec-

www.manaraa.com

8

tive in energy optimization of SoC devices. We provide supporting data for our

claims by including thermal images of an SoC while offloading was enabled and

while it was disabled. We also make a strong case for new power-profiling tools

that take a holistic view of the systems, including peripherals and accelerators

that are beyond the CPU. We provide two case studies, one using GPU/CPU

for video decoding and one using DSP/CPU for audio decoding, to show that

today’s SoC devices require very fine and sophisticated power-profiling tools to

account for the SoC’s exercised offloading mechanism of functionality to dif-

ferent IP blocks. Finally, we show that current software-based power-profiling

techniques for SoCs can provide an error rate close to 12%. Thus, they can-

not be used for increasing the energy efficiency of workload which offload form

CPU to the dedicated IP blocks. We present this project in Chapter 7. Two

papers were published for this project. The first one was published at the 4th

Annual International Conference on Energy Aware Computing Systems and

Applications 2013 [87] and the second one was published at Computer [70].

1.3 Organization

The remainder of this dissertation is organized as follows: in Chapter 2, we give

some background information related to our work which includes a clear distinction

between energy and power, description of power metrics that affect the processor’s

power consumption in addition to energy overhead analysis of the three layers of a

mobile device: the hardware, management, and application layers. We also present

a discussion of the related work in the existing literature related to energy efficiency

analysis and optimization of mobile devices. In Chapter 3, we describe SoftPowerMon,

a profiling tool for Android mobile devices, along with case studies that highlight the

tool’s usefulness. In Chapter 4, we focus on energy efficiency comparison of mobile

platforms through a quantitative approach. We describe EnergyMeter, a profiling tool

www.manaraa.com

9

to collect energy consumption on Windows-based platforms. Then, we collect power

metrics for eight common usage scenarios of mobile devices on the three most popular

platforms: Windows 8 and beyond, iOS, and Android. Based on the interpretation

of the results of our case studies, we derive a list of implications which can be used

by app developers in order to optimize the energy efficiency of their apps. In Chapter

5, we focus on energy profiling of background applications running on smartphone

devices (while the device is in standby) on two different mobile platforms: iOS and

Android. We also analyze the differences in energy consumption based on network

connectivity type (Wi-Fi versus 3G). Finally, we use knowledge gained through our

analysis in order to provide a list of implications which enable developers to improve

the energy efficiency of their apps. In Chapter 6, we present BatteryExtender, an

adaptive user-guided tool for power management of mobile devices. The tool enables

users to extend battery life on demand for a specific duration by reconfiguring the

device’s resources based on the user’s workload requirements and by profiling the

energy consumption of apps and predicting the battery life savings. In Chapter 7,

we describe SoC devices and concept of offloading to a specialized engine. Then, we

provide optimization techniques in order to increase the energy efficiency of the SoC

and show the gap in available tools to accurately profile such devices. Finally, in

Chapter 8, we present our conclusion and future work.

www.manaraa.com

10

CHAPTER 2: BACKGROUND

In this chapter, we make a clear distinction between power versus energy. In addition,

we discuss the metrics affecting power consumption of processors followed by an

energy overhead analysis of mobile devices. Then, we present the literature survey

related to our work and conclude the chapter.

2.1 Power versus Energy

Power and energy are sometimes used interchangeably in literature. However, these

two terms are far from synonymous.

Power is defined as the rate of doing work and is measured in watts (W). It is

calculated as shown in equation 2.1 where Power (P) is the ratio of Work (W) over

Time (T). Electrical Power is defined as the rate at which electrical energy is

transformed to another form of energy. It is calculated as shown in equation 2.2

where power is the product of electrical current (I) and voltage drop (V) measured in

watts, amperes, and volts respectively. On the other hand, energy is defined as the

amount of power consumed over time and is measured in joules (J). It is calculated

as shown in equation 2.3 where energy (E) is the product of power (P) and time (T)

as shown .

P =
W

T
(2.1)

P = I ∗ V (2.2)

E = P ∗ T (2.3)

www.manaraa.com

11

A system’s Energy Efficiency is defined as the required amount of energy needed

to complete a specific workload. The energy-efficiency (EE) value is calculated as

shown in equation 2.4 is the ratio of completed workload (W) over energy (E).

EE =
W

E
(2.4)

A data center’s power usage efficiency (PUE) is the ratio of total power of

the facility PFacility over the total power of IT equipment PITequipment
, as shown in

equation 2.5.

PUE =
PFacility

PITequipment

(2.5)

2.2 Metrics Affecting Power Consumption of Pro-

cessors

In order to properly power-profile a processor and isolate its power consumption from

the overall host system, profiling tools should focus on metrics specific to the CPU,

which determine its power consumption.

2.2.1 Processor Idle Sleep States

Modern processors attempt to reduce their power consumption by supporting different

idle states known as C-states. The power savings is achieved by turning off the CPU’s

unused architecture blocks. The C-states supported by a CPU depend on the type of

CPU. Regardless of the CPU type, the deeper the idle state, the greater the power

savings.

www.manaraa.com

12

2.2.2 Processor Performance States

Power performance states known as P-states are the processor’s frequency and/or

voltage. This number of frequency states depends on the processor type. The pro-

cessor can change its frequency and/or voltage based on the workload as a means of

saving power. The slower the processor’s frequency, the less power it consumes, and

vice versa.

2.3 Energy Overhead Analysis of Mobile Devices

A mobile platform architecture contains three layers: an application layer, power-

management layer, and hardware layer. Each layer can impact the overall energy

consumption on the basis of the following factors:

2.3.1 Application Layer

Applications running on a platform can increase the overall power consumption based

on their utilization of resources. Rivoire et al. [84] evaluated the relationship between

resource utilization and system-level power consumption on multiple platforms rang-

ing from laptops to a server. They showed that models based on OS utilization

metrics and CPU performance counters are in most cases the most accurate.

In order for developers to increase the energy efficiency of their applications, they

must execute their task as quickly as possible and then enable the platform to go

to idle quickly. One way to achieve this goal is by multithreading in a multicore

platform where tasks can execute concurrently on each core. This will enable cores to

go to idle sleep state faster than they would using consecutive execution of tasks. The

second technique for developers to reduce the power consumption of their applications

is by minimizing the resource utilization. This can be achieved by minimizing data

movement and the efficient use of cache. In our previous work [86], we demonstrate

how prefetching and caching in a DVD playback scenario can reduce disk spin, leading

www.manaraa.com

13

to a decrease in energy consumption compared to the absence of prefetching and

caching.

2.3.2 Management Layer

A mobile device management layer can greatly impact the battery life by managing

the power consumption of numerous hardware components. For instance, it can in-

crease the energy efficiency of a platform by suspending the hard disk based on its

utilization. It can also change the processor frequency based on its load. A lower fre-

quency leads to lower power consumption and decreases the processor’s performance,

and vice versa. Moreover, the management layer can also change the processor idle

sleep states, also known as C-States from active to idle. The deeper the sleep state,

the lower the power consumption and the greater the transition time from idle to

active and vice versa [71]. Another way to manage power consumption of the plat-

form is by changing the platform’s device power states, known as D-States, following

the Advanced Configuration and Power Interface (ACPI) specifications. The device

D-States enable power management of the platform to change the device’s power

consumption state. When a device components is in use, it is in full active state.

However, when it is not in use, ideally, it is supposed to go to an idle state. There

are multiple idle states, which can range from D1 to Dx. The deeper the idle state,

the lower the power consumption of the device and the greater the latency to go to

an active state, and vice versa. Even when a device is in idle state (i.e., not used)

it still consumes various amounts of power depending on the device type. As a re-

sult, the only way to completely eliminate the power consumption of unused device

components is by completely shutting off the device component.

2.3.3 Hardware Layer

The number of components in the the hardware layer depends on the platform itself.

We can broadly categorize them into the following categories: processor, memory,

www.manaraa.com

14

storage, network devices, sensors, utility devices, and display. (Power consumption

of the processor was already discussed in Section 2.2.)

Memory and Storage: Memory and storage power consumption depend on

the number of read and write instructions. As a result, lowering the numbers of read

and writes leads to lower energy consumption.

Network devices: Wireless network (Wi-Fi), Bluetooth, and Near Field Com-

munication (NFC) are under the network devices umbrella, where Wi-Fi is proved

by various literature (for example by Carroll and Heiser [32]) as the most power-

consuming device in this category despite having four power states: low idle, high

idle, low transmission, and high transmission. Some factors that can impact its power

consumption are the network strength, upload and download data size, and its uti-

lization frequency. This is due to the tail power, as described by Pathak et al. [80].

It is worth noting that the network adapter may be actively utilized by users when

surfing the web, downloading material, or actively streaming videos, but it can also

be triggered by background applications as well. In our previous work [72], we pro-

vided case studies on Android and iOS where we showed that when Wi-Fi was on,

background applications periodically triggered data fetch, leading to an increase of

battery consumption of the platform. Likewise, we should expect similar behavior on

Windows platforms. More specifically, the Metro App paradigm consisting of tiles,

enables its developers to create ”live tiles” that can be periodically updated [13]. A

misbehaving application can frequently update the live tile, leading to an increase in

energy consumption.

Sensors: Nowadays, mobile devices are built with an extensive number of sen-

sors. For instance, Microsoft requires for all its 8.1 Ultrabooks and tablets a set of

integrated physical sensors with object-oriented abstractions. The required sensors

are accelerometers, gyroscopes, ambient light, compass, and GPS [54]. These five

physical sensors map to a greater number of logical sensors known as fusion sensors

by combining the output of multiple physical sensors. The fusion sensors are the de-

www.manaraa.com

15

vice orientation and inclinometer. These sensors can be utilized for different purposes.

For instance, the Accelelometer can be used to determine movement and speed. The

compass and gyrometer improve location sensing by improving positioning through

accurate direction and orientation, thus enhancing data transmitted to location-based

applications. Developers can modify the update frequency of these sensors. As a re-

sult, an energy-inefficient application can keep theses sensors in active state for an

extended duration by changing the frequency update interval to a very low number.

Utility devices: Utility devices have specific functionality and can be turned

on/off on demand. Cameras, microphones, and speakers can fall into this category.

A recent patent for Samsung Electronics Co. LT [60] transformed the usability of a

camera device from a utility device, which strictly records videos or takes snapshots,

to a sensing device. The patent states that the technology allows them to use the

camera within a mobile device in order to acquire images, divide the images into

photograph regions, and determine if the image corresponds to a command, and if so,

carry out an action that changes the user interface (UI) without the need to touch

the screen.

Display: The display type of recent mobile devices is either OLED or LCD.

Display is one component that can significantly drain the battery. The two teleme-

tries that can impact display power usage are the display brightness and display

refresh rate. Regarding the display brightness, the power consumption of OLED dis-

plays depends on the color of the screen content, whereas the LCD display’s power

consumption varies based on brightness. However, according to Dong et al. [39], the

energy contribution by OLED while updating is close to the average energy consump-

tion of the display while the screen is constant. The second telemetry for displays is

the refresh rate, which can be measured in hertz. It is basically the number of times

per second by which the display hardware updates its buffer. The higher the refresh

rate, the lower the flickering of images, and the greater the power consumption. On

the other hand, a low refresh rate can result in flickering of images and lower power

www.manaraa.com

16

consumption. Finally, both display brightness and refresh rate need to be considered

when evaluating the power consumption of displays.

Finally, according to Abdesslem et al. [30], network, sensors, utility, and display

can greatly impact battery life. They provided a case study using a Nokia Na5 8GB

smartphone, in which they demonstrated that when all components were off, the

battery life lasted for 170.6 hours compared to 45.9, 21, 13.6, and 3.5 hours when the

accelerometer, Bluetooth, microphone, and video camera, respectively, were active

during the battery life duration, and 11 and 7.1 hours when GPS was used indoors

versus outdoors.

2.4 Related Work

Analyzing and optimizing the energy efficiency of mobile devices is a well-researched

topic. In order to attain this goal, researchers approached it from the following

five angles: power profiling of hardware components using hardware-based methods,

power profiling of hardware components using software-based methods, energy and

power profiling of mobile applications, increasing the energy efficiency of hardware

components, and increasing the energy efficiency of mobile applications.

2.4.1 Power Profiling of Hardware Components using Hardware-

Based Methods

Using external power-measurement tools, Carroll and Heiser [32] analyzed the power

consumption of smartphone components using a Data Acquisition system (DAQ)

with an instrumented platform. They ran various benchmarks in order to accurately

measure the power consumption of major components of a smartphone. Based on

their analysis, the display, GSM module, graphics accelerator/driver, and backlight

were the most power-consuming components.

Dong et al. [39] also relied on external measurement tools in order to power profile

www.manaraa.com

17

the graphical user interface on OLED displays at the pixel, image, and code levels.

They achieved accuracy of 99, 90, and 95 percent, respectively. They built their

energy models by measuring the power consumption of the display by collecting the

current drawn from a USB interface of a DAQ.

Finally, Lajolo et al. [65, 64] propose coestimation-based power estimation for

SoC design. They analyze different parts of the SoC using a system-level summation

master.

2.4.2 Power Profiling of Hardware Components using Software-

Based Methods

By only relying on software-based techniques for power profiling of device compo-

nents, Maker et al. [68] provided a technique to improve online power modeling in

smartphones. They conducted case studies where they profiled power consumption of

different smartphone components such as Wi-Fi, GPS, and cellular radio by changing

the battery management unit (BMU) sampling rate. As a result, they increased the

accuracy of power consumption estimation of those devices.

Similarly, Jung et al. introduced DevScope [59], an online power-analysis tool

for smartphone hardware components, which can accurately build the power models

despite the high-interval update rate of the BMU. Sesame [40] is another accurate

energy modeling tool that uses a smart battery interface to build accurate power

models with low-interval estimation of power consumption.

In addition, many software energy-profiling tools utilized Nokia Energy Profiler

to build their models. For instance, Perrucci et al. [81] conducted a large set of

experiments on a Nokia device running Symbian OS 9.2. Their experiments aimed to

measure the exact power consumption of all smartphone components while account-

ing for their different power states. They used Nokia Energy Profiler and verified

their results by a multimeter. They determined no significant difference between the

reported power consumption values from both. Likewise, Balasubramanian et al. [28]

www.manaraa.com

18

used Nokia Energy Profiler to profile network activities of available network technolo-

gies. They developed a model for the energy consumption of network devices, which

can account for devices’ tail power. As a result, they were able to present a method

that can reduce the tail power based on the RRC protocol.

Shye et al. [88] provided utilization-based power modeling, using Dalvik Applica-

tion logger for Android mobile phones to collect usage data and periodically sending

them to servers. They also estimate power consumption and the power breakdown

using hardware components. Finally, they use a regression-based power model that

uses high-level system measurements to estimate power consumption.

Finally, PowerBooter also focuses on power modeling [103] of Android devices. It

targets the CPU, LCD, GPS, audio, Wi-Fi, and cellular communication components.

The authors created a power model by designing a set of training applications that

explicitly exercise all relevant system states. Using the built-in battery voltage sen-

sors, they create a battery discharge for each individual component leading to the

determination of each component state’s power consumption. Then, they perform

regression to derive the power model.

2.4.3 Energy and Power Profiling of Mobile Applications

Profiling the energy and power consumption of mobile devices focused on two different

demographics: the first one focused on everyday users while the other focused on app

developers.

Focusing on everyday users. Most of the tools in this category rely on collective

information to build the energy consumption models. For instance, Carat [78] is a

tool that sends coarse-grained statistics to servers residing in the cloud. The statistics

sent include battery usage, running apps, the device model, and the operating system.

Based on the data collected from the pool of users, the tool can profile the application’s

impact on battery life and send notifications to users such as the best configuration

properties of their specific platform in order to increase battery life while running

www.manaraa.com

19

a specific application. Carat also notifies users about power-hungry apps and apps

that contain energy bugs. Likewise, Wang et al. [99] used a collaborative approach

to estimate the power consumption of mobile applications. They collected data from

120,000 Android users for about four weeks. The information collected contained

battery traces and application switching events. Then, they used the data to build

their power estimation model for mobile applications.

Focusing on app developers. A significant number of tools were developed

enabling app developers to debug the energy efficiency of their applications. For ex-

ample, Kansal et al. [62] introduced an energy profiler which lets developers make

power-aware design choices and trade off between energy consumption and perfor-

mance of their applications. Taking it a step further is Li et al. [67], who target

mobile application developers by enabling them to perform source-line-level energy

consumption profiling. They achieved this level of granularity by combining hardware-

based power measurements in addition to program analysis and statistical modeling.

Focusing on function, process, and/or thread-level profiling. PowerScope

[46] maps energy usage of mobile applications to processes and procedures. It requires

hardware instrumentations in addition to kernel modification. Also, Etop [69] is a

per-process energy profiler with a high resolution reaching a millisecond and targeting

Linux-based systems. It can provide information in real time while continuously

updating the energy profile of an entire application. In addition, pTop, developed

by Do et al. [38], is a process-level power-profiling tool, running at the kernel level

of Linux systems. The energy consumption of processes is based on the resource

utilization of the latter. In addition, Pathak et al. [80] provide fine-grained power

modeling for smartphones using system call tracing, which uses two types of models:

utilization-based and nonutilization-based power behavior. This technique did not

simply enable them to account for components’ power based on their state, but also

for the components’ tail power, and then associate the values with the application

responsible for the power consumption.

www.manaraa.com

20

WattsOn [74] is another tool aimed at application developers. It allows them to

focus on the energy efficiency of their code by mimicking the Windows Phone platform

and estimating the app’s energy consumption on the basis of empirically derived

power models made available by either the smartphone manufacturer or mobile OS

platform developers. Likewise, Eprof’s [79] main goal is to capture and account for

the power usage of the program entity by precisely accounting for the entitys effect on

components’ power state and accounting for the power consumed by the component

even after the entity completed its functionality. The tool can be used by application

developers in order to find the source code of energy bugs such as ”wakelock bugs.”

Finally, Wattch [31] is aimed at an even-lower level, focusing on enabling architects

and developers of compilers to analyze and optimize microprocessor power dissipation

at the architecture level.

2.4.4 Increasing the Energy Efficiency of Hardware Compo-

nents

In order to optimize the system’s energy efficiency, Intel Turbo Boost Technology 2.0

[16] was introduced, which controls the power and frequency of the CPU and processor

graphics and utilizes a power predictor to determine the adjustments needed. The

predictor’s outputs are also exposed externally to software. Bellosa [29] went a step

further, providing a thread-specific energy usage and using that information to control

the CPU clock speed.

A smartphone’s full potential can only be achieved by its ability to connect to the

Internet. The common connection models are through 3G cellular data networks and

Wi-Fi, in addition to the recent penetration of 4G LTE link, which is currently not

supported in all areas. The smartphone usability is diverse and highly dependent on

users demographics. Recent studies by Qian et al. [82] and Falaki et al. [45] revealed

that the number of applications used varies from 10 to 90 per user, and the number

of interactions per day varies from 10 to 200.

www.manaraa.com

21

Due to the importance of Wi-Fi and the amount of energy it consumes, Kim et al.

[63] introduced WiFisense, a Wi-Fi sensing system that maximizes the use of Wi-Fi

access points while improving the energy efficiency through adaptive scan-triggering

time intervals. Another Wi-Fi related project is Wi-Fi tethering, which refers to the

use of a smartphone’s Wi-Fi interface as a means to share its own Internet connection

with other clients such as tablets, smartphones, or computers. DozyAP [51] is a

system designed to put the Wi-Fi interface of a smartphone, which is acting as a

mobile software access point, into timed and client-approved sleep mode in order

to increase its energy efficiency. Similar to this work, we studied the potential of

reducing energy consumption when using Wi-Fi during idle mode as opposed to their

research which focus on Wi-Fi during active mode.

Finally, Qian et al. [43] characterizes the impact of 3G networks’ operational state

machine settings and provides insights into the present inefficiencies, which are due

to the interplay between the devices applications and the state machine behavior.

They then propose an optimal state machine setting that can, for instance, reduce

the energy of streaming YouTube videos by up to 80%.

2.4.5 Increasing the Energy Efficiency of Mobile Applica-

tions

In order to increase the energy efficiency of mobile applications, researchers introduced

API to be used by developers. For example, Senergy was developed by Kansal et al.

[61]. It includes an API that can be used by developers of context-aware applications

in order to enter latency, accuracy, and battery (LAB) requirements independent of

sensors and inference algorithms. Then, Senergy attempts to meet developers’ LAB

requirements by adapting as the hardware changes. Another framework example

is SystemSens [44], developed with the goal of monitoring usage of smartphones’

research deployment. It has a client-server model where the apps on smartphones

(clients) send periodical information to the server. A subset of the events sent are

www.manaraa.com

22

related to battery usage, screen status (on or off), service logs, and network traffic

statistics such as Wi-Fi signal strength, just to name a few. Application developers

can use the AIDL interface to be treated as a virtual sensor of the framework and thus

collect context and power utilization data related to the application. This information

can be collected and monitored by the application developers in order to increase the

energy efficiency of their applications.

Another mean to increase the energy efficiency of application is through offloading

parts of the applications execution from the mobile devices to other independent de-

vices through the utilization of Wi-Fi connections. Gordon et al.[47] presents COMET

(Code Offload by Migrating Execution Transparently), which can offload some of the

execution of an unmodified multithreaded application to run on multiple machines.

By allowing this type of offloading, the authors observed at least 1.7 times speedup

as opposed to only running the application on the mobile device.

CloneCloud [34] was developed by Chun et al. The system partitions applications

running on mobile devices and allows seamless offloading of parts of the applications

execution from the mobile device onto device clones available on the cloud. Parti-

tioning does not require modification of the mobile application. The system instead

relies on offline static and dynamic profiling of the application. The static profiling

step creates a database of possible partitions based on constraints (the application’s

method entry and exit points). Then, the dynamic profiler uses the database, which

was made available by the static part, to profile the input executable on the mobile

device as well as the cloud. Then, it creates the cost model for the set of possible

partitions. Finally, the optimization solver finds the appropriate partition that meets

the partitioning objective, which can either be to optimize the execution time or to

optimize the energy efficiency.

www.manaraa.com

23

2.5 Conclusion

In this chapter, we made a clear distinction between power and energy. Then, we ex-

plained the metrics affecting the power consumption of processors. Next, we provided

a comprehensive energy overhead analysis of mobile devices, followed by discussion

of related work.

www.manaraa.com

24

CHAPTER 3:

SOFTPOWERMON: A

POWER-PROFILING TOOL FOR

ALL ANDROID MOBILE

DEVICES

3.1 Introduction

The use of smartphones and tablets is continuously on the rise. It is forecast that by

2015, the sales of these handheld devices will surpass the sales of notebook personal

computers [24]. There are many reasons for the popularity of these devices. First of

all, there are thousands of applications developed specifically for these handheld (mo-

bile) devices, such as games, maps, video players, and reminders. Having thousands

of these applications makes it easy for clients to rely on their devices to perform tasks

that would have required a computer in the past. Second, the size of smartphones and

tablets makes them portable and easy to carry. Third, Internet and data networks

have become very accessible either through 3G or 4G LTE networks or Wi-Fi.

Smartphones and tablets are highly dependent on their battery life. What is

the point of having a very powerful device with a short battery life? As a result,

clients nowadays evaluate and compare devices and applications on the basis of their

performance and energy efficiency. Therefore, these devices’ energy efficiency is at

the forefront of research topics related to mobile devices.

Needless to say, the competition in this field is very high. There are several oper-

www.manaraa.com

25

ating systems in the market, such as Google’s Android (currently the most popular

OS), Apple’s iOS, and Windows Mobile. The competition is not restricted to the

platform but also extends to the mobile application market. Since energy efficiency is

a key evaluation component, platform and application developers must power-profile

their platforms and/or applications. It is not enough to simply understand how much

power a device is consuming or to predict how much it might consume; there should

be a deeper focus on understanding why a specific amount of power is consumed.

3.1.1 Motivation

Most of this research focuses on power modeling and battery life estimation, whereas

we focus on understanding the impact of an application on the underlying platform.

We developed a tool that allows microprofiling of CPU power consumption in order

to give platform and application developers data on the effectiveness of power man-

agement of the processor and the impact of applications on the processor’s power

consumption. We focus on giving information on “why” a specific amount of power

is consumed as opposed to “how” much.

3.1.2 Contribution

This chapter’s contribution is as follows:

• We propose a methodology for measuring power consumption behavior of An-

droid applications using a Software Power Monitor tool (SoftPowerMon). This

tool aims to provide platform and software developers with a means of examin-

ing how their platform and/or Android applications can affect a device’s battery

life.

• We developed two versions of the tool: one running on a host computer and

one running on an Android device.

www.manaraa.com

26

• We presented two case studies, one using smartphones and one using a tablet.

Through our case studies, we showed how applications can affect the platform’s

power consumption differently. We also showed how an application’s behavior

is similar when running on different devices and how the power consumption

behavior differs from one platform to another.

3.1.3 Organization

The rest of this chapter is organized as follows: in Section 3.2, we list and explain

power profiling techniques used to determine the energy efficiency of applications on

Android devices. Section 3.3 introduces the Software Power Monitor tool and lists

its advantages. We present case studies in Section 3.4, and in Section 3.5 we provide

an overhead analysis of SoftPowerMon. In Section 5.4, we showcase a SoftPowerMon

version that runs as an Android App. Finally, we present our conclusions in Section

3.7.

3.2 Power Profiling Techniques Used to Determine

Energy Efficiency of Applications on Android

Devices

Android is an open-source project published by Google since 2005. The Android

mobile operating system is developed based on a modified Linux 2.6 Kernel. It uses

native Linux libraries to manage and set policies of the Linux Power Manager. Energy

conservation can be achieved by changing the unused components’ power states during

idle time, changing the power performance states of the CPU based on the CPU’s

load, and reducing/eliminating unnecessary system wake-ups.

www.manaraa.com

27

3.2.1 Processor Idle Sleep States

Modern processors attempt to reduce their power consumption by supporting different

idle states known as C-States. The power savings is achieved by turning off the CPU’s

unused architecture blocks. The C-States supported by a CPU are dependent on the

type of CPU. Regardless of the CPU type, the deeper the idle sleep state, the greater

the power savings, and the more components in the CPU are switched off [17]. On

the other hand, the deeper the idle state, the longer it takes for the processor to move

from that idle state to an active state.

There are two types of idle states: core idle states and package-level idle states.

In multicore devices, each core can have its own independent idle state. However,

regarding the package idle states, a package cannot enter deeper idle states unless all

the cores in the system agreed to enter the same level of idle state or a deeper one.

An application’s energy efficiency can be measured by the percentage of time it

allows the processor to enter an idle state. A Linux kernel gives us enough infor-

mation to be able to determine the processor states. The kernel keeps track of all

the idle states supported by each processor, the idle state’s corresponding name and

description, its exit latency in microseconds, time spent in that state in microsec-

onds, and power consumed in milliwatts. All this information can be found under

/sys/devices/system/cpu/cpuXX/cpuidle, where XX represents the core number. Fi-

nally, the time spent in active state for each core can be determined as shown in

Equation 3.1 where D is the total test duration, n is the number of core idle sleep

states, and IdleStaten is the time a core spent in idle state n.

Active = D −
n∑

i=1

IdleStaten (3.1)

Power Performance States

Power performance states known as P-states are the processor’s frequency and/or

voltage. Each processor has a set of supported frequencies. The processor’s frequency

www.manaraa.com

28

can impact both performance and power consumption. There is a direct relationship

between performance and power consumption. We reduce the processor’s performance

by lowering the processor’s frequency, and thus we decrease its power consumption,

and vice versa.

The Linux kernel can have different policies for manipulating the processor’s fre-

quency. These policies can be enforced through the platform’s “governor.” The

platform may support several governors. Typically, the governor’s policy for P-

states is based on the CPU load, where in the event of load changes, the CPU

frequency changes as well. Governors can also be set to “powersave,” where the

lowest frequency is selected at all times, or set to “performance,” where the highest

frequency is set at all times. A user may set the frequency by accessing the directory

/sys/devices/system/cpu/cpu0/cpufreq/. In terms of power profiling of platforms or

applications, we are interested in the time spent in each frequency. This information

is available at /sys/devices/system/cpu/cpu0/cpufreq/stats/time in state. This infor-

mation will let us determine the pattern of power consumption of the CPU when it

was in active state.

Dynatick (Tickless Operations)

Traditionally, the Linux kernel used a global timer for timekeeping purposes. This

timer—also known as “timer tick”—causes timed interrupts. Because these interrupts

don’t account for the CPU’s idle sleep states, they will cause the CPU to switch to

active state in the event that the timer was triggerd when the CPU was in idle sleep

state. The kernel has long moved from “timer tick” mode to dynamic tick “Dynatick”

mode instead, where timer interrupts occur only when needed [90]. These ticks are

particularly important for power profiling of a platform because they can have a direct

impact on the duration the CPU can remain in the idle residency state. By accessing

/proc/time stats, the system reports the Dynaticks in addition to total number of

events, along with the average events per second. This information is particularly

www.manaraa.com

29

important for the kernel, operating system, and platform developers.

System Interrupts

Linux Kernel also keeps track of the resources that woke the system up. It keeps track

of the number of interrupts per CPU. It detects and records the internal interrupts,

such as the nonmaskable interrupts (NMI), local timer interrupts (LOC), TLB flush

interrupts (TLB), rescheduling interrupts (RES), and remote function call interrupts

(CAL). It also records the external interrupts for I/O devices. The system interrupt

data can be collected from /proc/interrupts. The fewer number of interrupts results

in fewer wake-ups, leading to less power consumption.

3.3 Software Power Monitor Tool (SoftPowerMon)

We developed a power analysis tool using Python that can be used on any Android

platform to perform debugging of the energy efficiency of Android applications and

processors with negligible overhead. SoftPowerMon requires that Android Debug

Bridge (adb) [37] be installed on a host computer. The tool runs on the host computer

and can access the platform under testing using a USB connection. Only rooted

devices may be profiled. Finally, the tool provides an output file containing all of the

raw data collected in addition to post-processing data.

• Processor Idle Sleep States Test: Using SoftPowerMon, we can collect the

time spent in each idle sleep state for each core. In addition, we can collect

the usage value for each idle state. This usage value represents the number

of transitions to a specific idle state. In our implementation, we considered

that some types of processors can turn one or more cores offline during the test

duration. As a result, we continuously poll the list of online cores. Finally,

during the post-processing step, we calculate the percentage of time the core

spent offline based on the list of online cores, in addition to duration in each

www.manaraa.com

30

idle sleep state. Finally, we use the total offline duration and total time spent

in each idle sleep state to calculate the total active duration.

• Power Performance States Test: In order to determine the time spent

in each frequency, we take a snapshot of the P-states time in state for each

frequency at the beginning and end of the test. The difference between the end

values and the beginning values represents the time spent in each frequency.

• Online Test: For the online test, we continuously poll the list of online cores

from the system along with the timestamp.

• Dynamic Tick Events Test: To collect the dynamic tick events, we simply

prompt the system to collect those data during a specific period of time. Then

we extracted that information to the tool user.

• Other Tests: We also created a test for collecting system interrupts, and

another test to collect some statistics about the system, such as the number of

cores, the available idle sleep states with their corresponding wakeup latency,

and the power-performance states supported, along with statistical information

such as the maximum and minimum power-performance states.

In addition to proving power profiling mean to the users, we also include a means

for users to control the device’s power. Using SoftPowerMon, users can change the

device governor in addition to changing the power performing frequency of the device.

The combination of all these data can give a clear view about the energy efficiency

of a platform or application and keeps the focus from how much power is consumed

to why this much power is consumed.

3.3.1 Advantages of SoftPowerMon

The advantages of using SoftPowerMon are as follows:

www.manaraa.com

31

Table 3.1: Benchmark description.
Benchmark Description

It contains pure JavaScript benchmarks for
OS kernel simulation, one-way constraint

Google V8 solver, Encryption and decryption, classic
Scheme, and regular expression benchmark [12]
It is an independent graphics benchmark made
to test the performance of embedded GPU systems.

NenaMark2 It uses the industry standard OpenGL—ES 2.0 API
to push GPUs to their limit in a setup that
resembles that of a game. [25]

Sunspider Browser JavaScript benchmark workload used to
cross browser to test JavaScript performance [19]
It is a performance-testing utility that measures
different graphics and computation capabilities
of a mobile device. The tests focus on graphic

GL resources, measuring the quality and performance
of the underlying OpenGL ES 2.x implementation.
The benchmark contains high-level 3D animation [56]

YouTube Played Elephant Dreams movie [41]
Idle Screen on and nothing running on the background

www.manaraa.com

32

• SoftPowerMon can answer the question of why a specific amount of power is

consumed as opposed to how much.

• Application developers may use it in order to observe power consumption be-

havior of the application.

• Application developers can use it to examine the impact of their application on

the platform in terms of wakeups.

• It may be used as a first-level triage without imposing extra overhead to the

power consumption of the platform under test.

• It does not require any flashing of the kernel.

• It can collect data on any type of processor. By using SoftPowerMon, a plat-

form manufacturer can strictly power profile the processor without taking into

consideration any other device component of the platform. This enables de-

velopers to perform an apples-to-apples comparison of power consumption of

an application running on different platforms. Thus, they can determine the

energy efficiency of one processor compared to another.

• Platform developers can use it in order to debug the energy efficiency of their

processors specifically when the platform is in idle (meaning no active workload).

Since SoftPowerMon does not impose an overhead, then platform developers can

use it to collect power behavior of the processor and observe the percentage of

time the processor spent in active state and in available idle sleep states. If they

observe high active duration or that the processor is not entering deep C-states

or the processor is in high frequency (as opposed to low frequency), then they

can determine that the power management of the processor is not effective and

they can dig deeper in order to resolve the issue.

www.manaraa.com

33

3.4 Case Studies

We performed two case studies: one using smartphones and the other using a tablet.

The first case study used two smartphones: a Samsung S3 and a Samsung Galaxy

Nexus 3. The second case study uses a Motorola XOOM tablet. For all the devices,

we ran the Android benchmarks as listed in Table 3.1 where we collected the power

performance and idle sleep states in addition to the dynamic ticks.

3.4.1 Smartphones: Samsung S3 and Samsung Galaxy Nexus

3

The first smartphone device used was a rooted Samsung S3 smartphone device, model

number GT-19300, running Android version 4.0.4 Ice Cream Sandwich with Linux

Kernel 3.0.15. The smartphone features an Exynox Quad core (Exynox 4412) also

known as a Quad ARM Cortex-A9 core. This type of processor can turn one or more

cores offline.

This processor’s power modes are as follows [33]:

• ARM Clock Gating (WFI) is the first level of idle sleep state also known as

state0. When the processor is in this state, most of the processor’s clocks are

disabled while its logic is still powered up. The exit latency is 1 us.

• ARM Power Down is a semi-idle state corresponding to state1 where the

processor is powered down while the caches remain powered up and maintaining

their state. The exit latency is 300 us.

The second device used was a rooted Samsung Galaxy Nexus 3 running Android 4.1.1

Ice Cream Sandwich. The device features an ARM dual core 1.2 GHz Cortex-A9. This

processor’s power modes are as follows:

• C1 (WFI) is mapped to state0. It is similar to the WFI state explained for

Samsung S3. Its exit latency is 4 us.

www.manaraa.com

34

• C2 (CPUs OFF, MPU + CORE INA) is state1, where the CPU is off, the

Memory Protection Unit (MPU) is on to protect critical data, and the core is

inactive. The exit latency for this state is 1100 us.

• C3 (CPUs OFF, MPU + CORE CSWR) is state2 and similar to state1

with the exception that the core is in Closed Switched with Retention mode.

The exit latency for this state is 1200 us.

• C4 (CPUs OFF, MPU CSWR + CORE OSWR) is state3, similar to

state1 with the exception that the core is in Open Switched Retention mode.

The exit latency is 1500 us.

We collected the idle states and power-performance states on both devices for our

entire list of benchmarks.

Figure 3.1 displays the data collected for Samsung S3 Idle states’ residency values.

By examining the graph, you will notice that, for few benchmarks, the data collected

do not add up to 100 percent. During those cases, the core was neither in Active

state nor in WFI state, but offline instead. Figure 3.1 also shows that core1 remained

for over 80 percent in Active state, whereas core2 was offline during the Google V8

benchmark. These results show that Google V8 does not run efficiently on the device

because, despite trying to save power by switching the status of core2 to offline, core1

remained in Active state most of the time and thus prevented the platform from going

into the low-package idle state.

The idle states of Nexus are displayed in Figure 3.2. Google V8 behaved similarly

as its behavior on S3. Even though core1 was not turned offline, there was no idle-

state balance between core0 and core1 (Note: Nexus does not support switching cores

to offline modes). Figure 3.2 also reveals that the Sunspider benchmark had a higher

percentage of active states compared to the other benchmarks.

Figures 3.3 and 3.4 displays the number of idle states transitions to WFI per second

for Samsung S3 and Nexus, respectively. By comparing S3 and Nexus, it is clear that

www.manaraa.com

35

the number of transitions for S3 is much higher than Nexus. This information is

helpful for platform developers because an overhead is incurred when the processor

keeps switching states. Therefore, platform developers must understand whether this

continuous switching of states is due to an optimized platform that switches to idle

states whenever possible or whether there are unnecessary interrupts that switch the

CPU state from idle to active on a continuous basis leading to a cycle of switching

between active and idle.

Figure 3.5 displays the percentage of time spent in each power-performance state

for Samsung S3 and Nexus for all scenarios. Google V8 power consumption is the

highest because both phones remained in the maximum power-performance frequency

during the majority of the test duration. Another valuable observation for platform

developers is the power-performance states of S3 during the idle scenario compared to

Nexus. S3 stayed for 17.57 percent of the time in a power-performance state higher

than its minimum frequency, whereas Nexus spent only 3.7 percent. During idle time,

the platform is required to consume the lowest possible amount of power. As a result,

this gap must be reduced to increase S3’s energy efficiency.

Figure 3.1: Comparing percentage of time in idle states residency for Samsung S3.

www.manaraa.com

36

Figure 3.2: Comparing percentage of time in idle states residency for Nexus 3.

Figure 3.3: Comparing number of idle states transitions to WFI per second for
Samsung S3.

Table 3.2: Benchmarks DynTicks events per second on Samsung S3.
Benchmark DynTicks Events Per Second

V8 712.902
NenaMark2 502.227

GL 546.378
Sunspider 767.662

www.manaraa.com

37

Figure 3.4: Comparing number of idle states transitions to WFI per second for
Nexus 3.

Figure 3.5: Comparing percentage of time in power performance states residency
for Samsung S3 and Nexus 3.

www.manaraa.com

38

3.4.2 Tablet: Motorola XOOM

The device used is a rooted Motorola XOOM tablet running Android 4.1.1 Ice Cream

Sandwich with Linux Kernel 2.6.39.4. The XOOM tablet features a NVIDIA Tegra 2

SoC integrated with dual-core ARM Cortex-A9. This processor offers two idle-state

modes:

• CPU Flow Controlled mode (LP3) is the first level of idle sleep state

(state0). It is characterized by having the CPU turn off all the components

except the memory units. This state’s exit latency is 10 us.

• CPU Power Gate (LP2) is state1 idle state and is characterized by a complete

shutdown. This state’s exit latency is 1500 us.

For this case study, we followed the same testing methodology as we did for the

smartphones. Figure 3.6 displays percentage of time spent in each idle states residency

for the tablet. It is evident that both cores remained in a high percentage of active

states during the YouTube case scenario. We also observed that core0 remained

active for a longer duration compared to core1 during Google V8 and Sunsipider.

In other words, there is a significant gap between active state duration among both

cores. This implies that the application’s load is not balanced among cores. This

imbalance can negatively impact the percentage of time spent in package-level idle

state residency. Because the package can only enter idle states when both cores are

idle, this imbalance leads to longer duration of package active state. This explains

the reason behind core0’s higher numbers of transitions from active state to idle

states compared to core 1, as displayed in Figure 3.7. In addition, since the load is

concentrated on one core instead of two and since the frequency is adapted based

on the load of the CPU, then this fact consequently explains the data collected for

P-states, as shown in Figure 3.8, where the CPU remained in the max CPU frequency

most of the time while running the two discussed benchmarks.

www.manaraa.com

39

Unlike Google V8 and Sunspider, Nenamark2 and GL benchmarks had a balanced

percentage of time in active state between core0 and core1. In addition, the CPU

spent only around 50 percent of the time in the max frequency and between 31 and

24 percent of the time in the min frequency.

Finally, we showed how, by using SoftPowerMon, we gained insight on the bench-

marks’ power behavior at the micro level without the need for any sophisticated tool.

We also showed that across the devices, the benchmarks had similar behaviors pat-

terns. This is an important characteristic because it lets application developers test

only their applications on a small subset of devices.

Figure 3.6: Percentage of time in idle states residency for Motorola XOOM.

3.5 Performance Analysis of SoftPowerMon

One main goal of our SoftPowerMon tool is to be able to collect power consumption

behavior of Android applications with low overhead. We compared our tool to similar

tools for profiling power consumption of Android applications. The first tool we

examined is PowerTutor [101], which provides information such as energy usage over

time of different phone components, including LCD, Wi-Fi, CPU, and 3G. The second

www.manaraa.com

40

Figure 3.7: Comparing number of transitions to idle states per second for Motorola
XOOM.

Figure 3.8: Comparing percentage of time in power performance states for Motorola
XOOM.

www.manaraa.com

41

tool we examined is System Panel App / Task Manager Pro [6], which displays CPU,

memory, and network activities in addition to battery usage of the device.

In order to evaluate our tool’s performance overhead, we randomly selected Ne-

naMark2 from our list of benchmarks. We collected the data using SoftPowerMon

on Samsung S3 while following three different scenarios: (1) running the benchmark

alone; (2) running the benchmark along with running PowerTutor in the background;

or (3) running the benchmark along with System App/Task manager Pro running in

the background. Figure 3.9 represents the results of idle states residency percentages

collected during the three scenarios, where SPMon, Ptutor, and SysPan are associated

with scenarios 1, 2, and 3, respectively.

Based on the results, it is evident that, using SoftPowerMon without any other

profiling tool, the device remained in active states for less time when compared to

running it while other profiling tools were collecting data. Table 3.3 represents the

performance states residency results for the same above scenarios. By comparing the

results, we noticed that by solely using SoftPowerMon, the device could run during

5.96 percent of the time in the low P-state frequency of 500 MHz, whereas it spent

0 percent of time in the same frequency during the other two scenarios. In addition,

by solely using SoftPowerMon, the device remained around 6 percent less time in the

high P-state frequency of 1200 MHz when compared to the other two scenarios.

Another strategy to evaluate the overhead of collecting data via SoftPowerMon

was to observe the impact of SoftPowerMon on the power and CPU utilization data

collected using PowerTutor and SystemPanel. We noticed that there were no vari-

ations in the data collected via the latter two tools when we compared the results

obtained while running SoftPowerMon and without running it.

Finally, PowerTutor and SystemPanel can collect more information than Soft-

PowerMon. However, if a user’s intent is to just collect the impact of an application

on the power utilization of the CPU and look at its direct impact on the idle state

residency and power frequency, then SoftPowerMon is the best choice. It can provide

www.manaraa.com

42

Frequency SoftPowerMon PowerTutor SystemPanelPro
1400 MHz 0.20 0.27 0.64
1200 MHz 93.71 99.73 99.36
1100 MHz 0.06 0 0
700 MHz 0.05 0 0
500 MHz 5.96 0 0

Table 3.3: Comparing percentage in P-states during NenaMark2 benchmark

all this data to the user with minimal overhead. Knowing the percentage of CPU

active state and its frequency can give a microlevel perspective on why an application

is consuming a specific amount of power.

Figure 3.9: Comparing percentage in C-States when running SoftPowerMon, Pow-
erTutor, and SystemPanelPro during NenaMark2 benchmark.

3.6 SoftPowerMon - The Android App

We also developed a version of SoftPowerMon that runs on an actual Android device

instead of a host computer. There are distinct advantages for each version of Soft-

PowerMon. The advantage of having an Android-based version to run on the device

is thereby eliminating the need of having the device rooted. On the other hand, since

every application running on a device poses a power usage overhead, having a version

www.manaraa.com

43

that runs on a host platform instead ensures that the power usage overhead is close

to null.

3.6.1 Description of SoftPowerMon - The Android App

The Android app version of SoftPowerMon contains the following sections:

• Device Info: The Device Info section gives general battery information, core

information, and device frequency information, as shown in Figure 3.10.

• Power Tests: The Power Tests section lets the user select a test scenario to

run or run all tests. The user can also select the test delay time and duration,

as shown in Figure 3.11.

Once a test is completed, the user can save the test results and view them in a

graph. Figures 3.12, 3.13, and 3.14 display the tabular results for the C-states,

P-states, and Core Online results, respectively. Figures 3.15 and 3.16 display

the graphical results of C-states and P-states, respectively.

• Settings: The Settings section displays all the available governors and fre-

quencies and lets the users change them based on their preferences as shown in

Figure 3.17.

• Info: The Info section explains all the tests.

• History: The History section lets the user view the results of tests previously

collected on the device.

3.7 Conclusion

In this chapter, we list and explain power profiling techniques used to determine

energy efficiency of applications on Android devices. We developed SoftPowerMon, a

www.manaraa.com

44

Figure 3.10: Device info screenshot.

www.manaraa.com

45

Figure 3.11: Power tests screenshot.

www.manaraa.com

46

Figure 3.12: C-states tests results.

www.manaraa.com

47

Figure 3.13: P-states tests results.

www.manaraa.com

48

Figure 3.14: Core online test results screenshot.

www.manaraa.com

49

Figure 3.15: C-states results graph.

www.manaraa.com

50

Figure 3.16: P-states results graph.

www.manaraa.com

51

Figure 3.17: Settings screenshot.

www.manaraa.com

52

tool that can be used by developers and the hardware manufacturer in order to debug

the energy efficiency of Android applications and processors with very low overhead.

Then, we presented two case studies where we collected and analyzed power data using

SoftPowerMon on two different devices for several Android benchmarks. Finally, we

compared the performance of SoftPowerMon to two other popular profiling tools and

determine that it can collect data with negligible incurred overhead. SoftPowerMon

can explain why an application is consuming a specific amount of power as opposed

to how much it is consuming.

www.manaraa.com

53

CHAPTER 4:

ENERGY-EFFICIENCY

COMPARISON OF MOBILE

PLATFORMS: A

QUANTITATIVE APPROACH

4.1 Introduction

Mobile devices changed the landscape of computing. Gradually, mobile devices are

replacing the traditional personal computers (PCs) to become the devices of choice for

entertainment, communication, and productivity. The introduction, or the blooming

of these devices, poses a challenge to the industry that provides online tools and ser-

vices. All of a sudden, for instance, company X, which has a website that traditionally

provided a service to stream videos, is now ”forced”—in order to remain competitive

in the industry—to provide tailored apps for each mobile operating system (OS). As

a result, due to the fact that each OS has its own programming environment, execu-

tives must decide whether to provide N amount of apps for N amount of operating

systems or perhaps create a single mobile-web-based app that can be accessed via a

browser.

Mobile devices are limited by their battery life, which is only growing by 5%

annually [73]. Due to the scarcity of battery life, users are not simply evaluating

an app from a performance perspective, as they used to for desktop apps, but they

are also evaluating the apps from an energy efficiency perspective. As a result, in

www.manaraa.com

54

order for an application to succeed in the market, it needs to be optimized from an

energy-efficiency perspective.

4.1.1 Goals

Since mobile apps are evaluated from an energy efficiency perspective, we performed

energy efficiency comparison of mobile platforms using a quantitative approach in

order to achieve the following:

1. Since developing an app for each OS is costly, our goal is to determine if it is

worthwhile from an energy-efficiency perspective to develop native apps or to

simply develop web-based apps. As a result, we compare the energy efficiency

of native versus web-based apps.

2. Since apps are evaluated from an energy-efficiency perspective, our goal is to

determine if same categories of applications show similar impact on the energy

consumption of the platform on the top three most popular operating systems.

3. Through detailed evaluation of energy efficiency of apps, our goal is to show

how the power metrics correlate in order to describe the causes of the energy

inefficiencies of apps.

4. Through observation of energy consumption behavior of apps, our goal is to

derive a list of recommendations for app developers.

4.1.2 Contribution

The contributions of this chapter are listed as follows:

• We developed a tool EnergyMeter, which can collect the platform, package,

core, and GPU energy consumption on Windows platforms.

www.manaraa.com

55

• We characterize the popular mobile apps into eight categories: browsers, video

streaming, music streaming, maps, video chatting, cloud storage, social net-

working, and e-mail services.

• For each mobile app category, we profile the energy efficiency on the three

most popular operating systems, Windows, iOS, and Android, in terms of the

following list:

1. Same app categories on a single operating system (OS) compared to other

apps of the same category on the same OS.

2. Ranking of the energy efficiency of the same app on a different OS.

3. Comparing the energy efficiency of the same application if accessed using

a native app or using a browser.

• Based on our case studies, we derived a list of observations, causes, and impli-

cations, which are summarized in Table 4.1.

• We provide a list of the top 10 energy-efficiency rules recommended for app

developers.

www.manaraa.com

56

Table 4.1: List of observations and implications based on

the case studies comparing the energy efficiency of appli-

cations on three mobile operating systems: Windows 8

and beyond, iOS, and Android.

Observations Causes Implications

The major 3 operating systems providers

O1: Apps released by

Apple are more en-

ergy efficient than all

third-party apps be-

longing to the same

app category.

The energy profiling

tool supplied by Apple

contained the least pre-

cise information com-

pared to other profiling

tools.

Developers need more variety

of metrics to be profiled and

with higher precision in order

to better profile their apps.

O2: Apps released

by Google were more

concerned with per-

formance than with

energy efficiency.

Google apps on Win-

dows 8.1 changed the

timer resolution from

15.6 ms to 1 ms, causing

high average of wake-

ups per second. Google

apps on Android ac-

quired the highest num-

ber of wakelocks and

wifilocks.

Developers for Google apps

should attempt to increase the

energy efficiency of their apps

by enabling the platform to

go to idle state (e.g, refrain

from changing timer resolution

on Windows 8.1 and reduce

the numbers of wakelocks and

wifilocks on Android).

Continued Table 4.1 on next page

www.manaraa.com

57

Observations Causes Implications

O3: Apps released by

Microsoft were more

concerned with en-

ergy efficiency than

with performance

Apps performed poorly

but ranked high in en-

ergy efficiency. (For ex-

ample, streaming music

kept interrupting the

music while buffering)

Developers should be capable

of balancing energy efficiency

and performance. Apps with

high energy efficiency and low

performance cannot compete

in the mobile apps market.

Observations related to energy-efficiency application design

O4: Multi threading

can lead to either in-

creasing the energy

efficiency of an app or

decreasing it.

If threads are not con-

currently executing a

task, then there will be

an imbalance in the uti-

lization of cores, leading

the processor’s package

to remain for a high

percentage of time in

active state.

Multi threading without ade-

quate balance of concurrency

can negatively impact the en-

ergy efficiency of an app.

O5: Despite the fact

that buffering data

can enable Wi-Fi ra-

dio to go to deep

idle sleep states, it

can also increase the

power consumption of

memory.

Large buffer data are

stored in memory and

caches that consume

high power.

Data size of the buffer needs to

be carefully examined because

developers need to balance be-

tween the energy savings from

enabling the Wi-Fi radio to go

to idle sleep states and the ex-

tra energy consumption due to

the increase in memory usage.

Continued Table 4.1 on next page

www.manaraa.com

58

Observations Causes Implications

O6: In general, na-

tive apps consumed

less energy than ac-

cessing the web-based

version of the app.

Native apps tend to

have higher CPU

utilization and lower

memory utilization

compared to web-based

apps.

It seems a good investment

for companies to create native

apps for each platform in or-

der to increase the energy effi-

ciency of their product.

O7: The same app

can rank as the most

energy efficient in one

category, using a spe-

cific OS, but can rank

as the least efficient

on a different OS.

Each OS has its own ar-

chitecture.

Following the same architec-

tural design with different lan-

guage implementations in or-

der to provide an app for each

platform is not enough. Also,

the architectural design should

be specific to each platform in

order to optimize the energy

consumption of the app based

on the OS.

Observations related to app developers practices

Continued Table 4.1 on next page

www.manaraa.com

59

Observations Causes Implications

O8: By comparing

applications with the

same functionality

and running on the

same platform, we

found that they can

vary vastly in terms

of energy consump-

tion (more than 50%

in some instances).

Due to the lack of point

of reference, app devel-

opers cannot determine

the range of energy ef-

ficiency value that they

need to target.

There is a need for energy

benchmark apps for each cate-

gory of apps in order for devel-

opers to use them as a baseline

to compare it with the energy

consumption of their apps in-

stead of using device idle en-

ergy consumption as the base-

line.

O9: Debugging the

energy efficiency is

a complicated process

where one specific en-

ergy metric value in

a specific context can

mean something com-

pletely different in a

different context.

Example: apps with

high wake-up average

per second are consid-

ered energy inefficient.

However, if the proces-

sor is active for a large

percentage of time and

the average number of

wake-ups is low, it does

not mean that the app

is energy efficient.

Developers should not focus

on one or two energy profil-

ing metrics to profile the effi-

ciency of their apps (e.g, CPU

or memory usage). Adequate

profiling requires correlation of

extensive set of power metrics

and interpreting the data col-

lected in the context of the col-

lection.

Continued Table 4.1 on next page

www.manaraa.com

60

Observations Causes Implications

O10: Changing timer

resolution on Win-

dows OS and hold-

ing wakelocks on An-

droid OS are a com-

mon practice.

Either lack of aware-

ness of the overhead of

those energy-inefficient

practices on energy con-

sumption or developers

are making conscious

decision to sacrifice en-

ergy efficiency in or-

der to increase perfor-

mance.

There needs to be more aware-

ness among developers on the

impact of these two metrics on

the overall energy efficiency of

their apps. Energy efficiency

of apps should not be an af-

terthought but it should incor-

porated in the overall design of

the app.

End of Table 4.1

4.1.3 Organization

To this extent, the remainder of the chapter is organized as follows. In Section 4.2, we

describe the current three popular mobile operating systems, which are Windows, iOS,

and Android. Then, we list and describe in Section 4.3 the top 10 energy-efficient

programming rules. We present our quantitative analysis approach in Section 4.4

followed by eight detailed case studies on each platform in Section 4.5. Based on the

case studies, we derive a list of implications in Section 4.6. Then, we examine related

work in Section 4.7 and conclude in Section 4.8.

4.2 Mobile Device Operating Systems

There are many mobile device platforms. According to an article published by CNET

news [21], iOS, Android, and Java ME held the top 3 positions for the mobile and

www.manaraa.com

61

tablet worldwide market share of operating system usage for November 2013 as shown

in Figure 4.1. However, according to Gartner forecast [5], the top 3 positions for the

mobile devices by operating system worldwide will be Android, iOS, and Microsoft in

the next couple of years as shown in Figure 4.2. Therefore, we focus in this chapter

on the later operating systems (OS).

Figure 4.1: Mobile and tablet worldwide market share of operating system usage
for November 2013. Net Market Share collects browser data from a
worldwide network of over 40,000 websites.

www.manaraa.com

62

Figure 4.2: Gartner forecast of mobile devices by open operating system, world-
wide, 2014-2016.

4.2.1 Windows 8 and Beyond

Windows 8 and beyond (Windows 8.1) was developed by Microsoft. This operating

system was developed in order to compete with the tablets market, which is cur-

rently dominated by iOS and Android. It is significantly different than all previous

OS released by Microsoft. It still has the desktop feature, which is associated with

personal computers, in addition to the adoption of the Metro design concept where

applications are represented as tiles that have a similar look and feel as other mobile

devices with the exception that they are a bit larger in size.

One of the advantages of the new OS feature is the introduction of Windows Push

Notification Services (WNS). WNS enables Windows Store Apps developers to sent

toast, tile, badge, and raw updates from their own cloud service to the WNS server

[18]. The benefits of WNS are as follows:

1. No persistent socket between all apps and the remote server. Instead, Windows

maintain the connection to WNS server. As a result, this mechanism reduces

www.manaraa.com

63

the overhead of sending keep alive messages to the remote servers.

2. Single connection between client and cloud service which can support all apps.

3. No need to maintain many parked TCP socket connections.

4. Apps do not have to reside in memory at all times but yet they keep getting

updates from the server.

Another key feature enabled by Microsoft through the release of Windows 8 is the

connected standby feature, which is the connected standby power model that runs

at a very low power level in order to stay connected and up-to-date even when the

device appears to be powered down.

The other specific feature of Windows mobile devices is timer resolution. The

timer resolution determines the time interval for the OS to perform two actions. The

first action is to update the timer tick count if a full tick has occurred, and the second

one is to check if an already scheduled time has expired. The current default timer

resolution is set to 15.6 ms. Some applications may change the timer resolution to a

low value, causing the platform to consume more energy over time due to frequent

wakeups. For example, if the timer resolution is set to 15.6 ms, then the platform

will have 64 calls per second. However, if an application changes it to 1 ms, then the

platform will have 1,000 calls per second. Changing the timer resolution is not always

a negative practice. If an application is actively using the processors, then changing

the timer resolution may not have a bad impact since the processor is already in

active state upon the timer duration expiration.

4.2.2 iOS

iOS is the mobile operating system introduced by Apple in 2007. It was derived from

OSX (Apple’s desktop OS) because its kernel is based on Darwin OS. iOS has the

following four architectural layers [8] (from highest to lowest):

www.manaraa.com

64

• Cocoa Touch Layer: This layer contains the key frameworks for building

iOS apps. They define the appearance and provide the infrastructure for multi-

tasking, touch-based input, push notifications, address book UI, iAd framework,

messages UI, and Map Kit framework.

• Media Layer: This layer contains the graphics, audio, and video technologies

that enable developers to implement multimedia apps.

• Core Services Layer: This layer contains the fundamental system services for

apps. These services include peer-to-peer services, which enable the initiation of

communication sessions between nearby devices. It also includes iCloud storage,

which enable apps to write data to a central location on the cloud. In addition,

it provides a service for automatic reference counting (ARC), where the compiler

manages the lifetimes of objects instead of having the developer worry about

that aspect of their apps. Moreover, it provides the data protection service that

developers can use in order to encrypt the user sensitive data.

• Core OS Layer: This layer contains the low-level features that most other

technologies are built upon. These are not used directly by an app, but they

are used by the upper layer frameworks.

iOS Software Development Kit (SDK) contains the tool and interfaces needed to

develop, install, run, and test native apps. The native apps are developed using iOS

SDK and Objective-C language.

4.2.3 Android

Android is an open-source operating system that is based off of a modified Linux

Kernel. Android has four architectural layers which are from the highest to the lowest:

applications, application framework, Libraries and Android runtime, and Linux kernel

[55].

www.manaraa.com

65

• Applications: This is the layer that most users interact with. It is capable of

running Java applications.

• Application Framework: This layer is written in Java. It provides the struc-

ture for all running applications. Some of the functions of this layer are the

activity manager and call manager.

• Libraries: Libraries are also known as APIs. They are written in either C or

C++. They include functionality such as database storage and graphics APIs.

• Android Runtime: This layer consists of the custom virtual machine known

as Dalvik Virtual Machine and the core libraries which are needed in order to

operate the Java code.

• Linux Kernel: This layer includes the set of drivers for the hardware com-

ponents such as display, keypad, and connection for Wi-Fi and cellular signals

[93].

In order to develop apps for Android, developers need Eclipse, Java Development Kit

(JDK), Android Software Development Kit (SDK), and the Android Development

Tools (ADT).

A specific feature for Android is the presence of wakelocks. The wakelock is a

mechanism that informs the OS that the app needs the device to remain on. There

are two classes of wakelocks: kernel space and user space [75]. These wakelocks may

decrease the energy efficiency of an app because they keep the device on. Wakelock

don’t simply keep the device on while the screen is on; if developers forget to release

the lock, the app will remain awake even if the power button is pressed.

Another specific feature for Android is the presence of another lock called WifiLocks.

This type of lock enables the application to keep the Wi-Fi radio awake until the re-

lease of the lock. WifiLock is not exclusively acquired by a single app at a time;

however, multiple apps can acquire it concurrently and the Wi-Fi radio remains in

www.manaraa.com

66

full power state until all apps release the lock. This type of lock can be very expensive

in terms of energy consumption, especially if a developer forgets to release it.

4.3 Top 10 Energy Efficient Programming Rules

There are general rules that software developers should adopt in order to ensure that

their apps are energy efficient. The 10 rules are as follows:

1. Extend platform sleep duration

In order to increase the energy efficiency of a platform, developers should keep

the platform’s components active for the shortest possible duration and avoid

waking up components unless necessary. For example, when developing apps for

Windows OS, developers should avoid decreasing the timer resolution interval

in order to avoid frequent wake-ups of the platform. Another example is using

the OS’s API, which can extend sleep duration. For instance, Windows provides

two APIs, SetWaitableTimerEx and SetCoalescableTime, which can be used in

order to decrease unnecessary wake-ups.

2. Event-driven architecture

Polling can cause unnecessary wake-ups for the platform. As a result, developers

should use event driven interrupts instead of polling for information.

3. Design energy-efficient user interface (UI)

Energy-efficient UI consists of accelerating user interaction. In other words,

users should be able to get to the required screen using the least amount of clicks.

In addition, frequent screen changes can impact the energy consumption of the

display and GPU. Therefore, developers should balance the interface experience

with the energy efficiency of rendering the updates. Moreover, developers should

consider whether to display a progress bar (which keeps getting updated) versus

a simple busy indicator (which doesn’t require interface update). Finally, when

www.manaraa.com

67

developers are considering graphically rich interfaces, they should weight the

impact of their creativity on the energy efficiency of the app. For example,

even though splash screens can be graphically rich, they can have high energy

consumption.

4. Consider data locality

Memory and storage are high power consuming components of a mobile device.

Therefore, developers are encouraged to operate on small data at a time so

data can stay in cache, keep the percentage of memory usage low, and keep the

number of reads from storage low.

5. Efficient multithreading

Multithreading within apps is a common practice. However, multithreading

does not necessarily mean concurrency. But, unless threads are concurrently

running on a multi-core device, then they won’t be optimized in terms of energy

efficiency. Figure 4.3 visualizes the impact of thread execution sequence on the

package active duration. Ideally, a developer needs to target to enable the

package to enter in idle sleep state for the longest possible duration.

6. Take advantage of context programming

Context programming makes the apps smarter. Developers should enable their

apps to sense the environment in which they are operating and trigger reactions

based on the changes in the environment. For instance, they should be able to

sense if the device is in AC or DC mode. If the device is connected to power,

then they can trigger backup.

7. Be aware of low update frequency intervals of sensors

Today’s mobile devices are geared with several sensors such as an accelometer

and gyrometer. These sensors are managed through APIs that enable developers

to change the interval update frequency. Developers should avoid low update

www.manaraa.com

68

intervals of these sensors in order to reduce the number of wake-ups caused by

the updates and enable the sensors to go to idle sleep states.

8. Coalescent network activities

Every connection to the network consumes power to transmit or receive packets

in addition to the tail power of the network device. As a result, spacing connec-

tions out unnecessarily can waste significant power. Developers may reorganize

their code in order to group the app’s network connection together.

9. Close network sockets

After an app finishes transmitting or receiving data over the network, it does

not automatically close the connection. As a result, after an interval with no

network activities, the Wi-Fi radio enters an idle sleep state until the server

will time out and close the socket by sending a FIN packet, which will switch

the Wi-Fi radio back to active state. Therefore, it is highly recommended

that developers close network sockets when they are done with transmitting or

receiving data.

10. Avoid high-resolution images

High-resolution images are pretty and may have an added benefit to the user

experience and feel of an app. However, these high-resolution images are costly,

in terms of energy efficiency, to render. Therefore, developers need to weight

the importance of high-resolution images versus energy efficiency of their apps.

www.manaraa.com

69

Device OS Version Processor Memory Storage
Nexus 7 Android 4.3 Kernel

3.1.0-g9e52a21
Qualcomm Snap-
dragon S4 Pro
APQ8064-1AA x4

1 GB 16 GB

iPad Air iOS 7.0.6 A7 chip with 64-bit ar-
chitecture and M7 mo-
tion coprocessor

1 GB
DDR3

16 GB

Surface 2 Pro Windows 8.1 Intel(R) Core(TM)
i5-4200U (HASWELL
ULT)

4 GB 64 GB

Table 4.2: List of devices

Figure 4.3: Comparison of the impact of multithreading on package active duration.

4.4 Quantitative Analysis Approach

Our experimental setup includes three devices as shown in Table 4.2. For each OS,

we used different tools in order to collect the power metrics.

4.4.1 Windows

We installed Windows Assessment and Deployment Kit for Windows 8.1. We used

Windows Performance Toolkit tools: Windows Performance Recorder (WPR) [23]

and Windows Performance Analyzer (WPA) [22]. In addition, we have used Event

www.manaraa.com

70

Tracing for Windows (ETW) [11]. During our collection, we examined the following

metrics:

1. Per-core idle sleep states: This is the percentage of time spent in each idle

sleep state per core.

2. Package idle sleep states: This is the percentage of time spent in each idle

sleep state during the test duration. In order for package to switch to a sleep

state, it requires that both cores concurrently switch to a sleep state.

3. Core frequency: This is the power state of the core when it was in active state.

Since the platform we used had two cores and each had independent frequency

value, we first summed the duration spent in each frequency per core, and then

calculated the average.

4. Hit count and total active duration: Hit count is the total number of times

a process was scheduled to run, including all context switches, not just the ones

that occurred right after a wakeup. Total active duration is the value of “busy

period” where the process was actively processing some “job”.

5. Package and core wake-ups: We were able to also collect the number of

times that package and core transitioned from any idle sleep state to an active

state.

6. Timer resolution percentages: This metric provides the percentage of time

spent in a specific timer resolution interval.

7. Number of threads: We were able to determine the number of threads per

application.

In order to collect energy consumed by the platform in addition to the energy

consumed by package, core, and GPU, we developed EnergyMeter, a tool that can

collect all the listed metrics.

www.manaraa.com

71

EnergyMeter Description

EnergyMeter was developed in C++. It takes as an input the test duration and

outputs the total energy consumed by the platform, package, cores, and GPU in

joules.

In order to collect the platform power, we relied on Windows API, which enabled

us to get a handler to the device interface of the battery in order to collect BAT-

TERY QUERY INFORMATION, which contains all of the battery capacity. The

battery capacity (C) is reported in milliwatts per hour (mW/h). This capacity value

represents the energy stored in the battery. Therefore, EnergyMeter collects the ca-

pacity at the beginning of the execution of the tool and then after the timer expires.

Next, the delta of the two capacity values represents the total energy consumed. Next,

we calculate the total energy consumed in joules as shown in Equation 4.1.

E(j) = ∆C(mWh) ×
1

1000︸ ︷︷ ︸
Convert to Watt

× 3600︸︷︷︸
Convert to Seconds

(4.1)

In order to collect package, core, and GPU energy consumption, we relied on

hardware counters since Surface 2 Pro contains an Intel Haswell ULT chipset that

supports energy counters. The processor supports four non-architectural Machine

Specific Registers (MSRs) for Running Average Power Limit (RAPL) [15]. The

first one is MSR RAPL POWER UNIT. This register contains power units from bits

(3:0), energy status units from bits (12:8), and time units from bits (19:16). The

remaining ones are MSR PKG ENERGY STATUS, MSR PPO ENERGY STATUS,

and MSR PP1 ENERGY STATUS, which report package, core, and graphics actual

energy consumption. The MSRs are updated at approximately 1-ms intervals and

the register wraparound time is about 60 seconds when power consumption is high.

In order to be able to read MSRs, the application must run at the kernel level

(Ring0). Therefore, upon executing EnergyMeter, we initialize the driver and read

the power unit MSR determine the energy units. Then, at a 30-second interval, we

www.manaraa.com

72

collect the energy MSRs. In order to calculate the energy used by package, core, and

graphics, we calculated the ∆EMSR and multiply it by the energy unit retrieved from

MSR RAPL POWER UNIT.

Finally, using this tool, we were able to collect the energy metrics for platform,

package, core, and GPU.

4.4.2 Android

In order to power profile our Android device, we used the Trepn profiler provided

by Qualcomm [20]. Trepn is a diagnostics tool that enables users to profile both

performance and power consumption of Android applications which are running on

devices with Qualcomm Snapdragon processors. We were able to collect the following

metrics:

• CPU utilization: Trepn provides the total percentage of CPU utilization

overtime per application. As a result, we used that data in order to visualize the

changes of load overtime in addition to calculating the average CPU utilization.

• Average power in uW: According to Trepn’s manual, the average power is

calculated by first collecting the power consumption for 5 seconds and using the

average value as a baseline denoted as Pbase. Then, for the remainder of the

test duration, the tool collects the power consumption of the device, and then

get the average of the power consumption denoted as Ptest. Finally, the average

power is calculated by subtracting Pbase from Ptest.

• Average virtual memory: The tool also provides per application the size of

average virtual memory utilized in MB.

• Wakelocks: The tool provides the acquired wakelocks overtime per applica-

tions. As a result, we counted the total wakelocks requested per application.

• Number of threads: This is the number of threads per app.

www.manaraa.com

73

• Wifilocks: The tool provides the acquired wifilocks overtime per application.

As a result, we counted the total wifilocks requested per application.

• GPU load and frequency: The tool provided the load and frequency of GPU

overtime. Unlike the other metrics which were broken down per application,

these values are the utilization by the platform.

Due to the extensive overhead we observed during the collection process using

Trepn, we also used SoftPowerMon (described in the previous chapter) to collect the

processor’s idle sleep states and frequency.

4.4.3 iOS

In order to profile on iOS operating system, we used the Instrument tool provided by

Apple [7]. This tool has a specific Instrument for energy profiling. Energy profiling

can be enabled on the device and upon completion, users can connect the device to an

Apple computer where the log can be imported into the Instrument for examination.

During our collection we examined the following metrics:

1. Energy level: The tool provides on a scale of 0 to 20 the energy consumption

of the device overtime. They don’t provide an exact value for power drawn

but they provide the scale where 0 is the least energy consumed, and 20 is the

highest possible energy consumed.

2. Total CPU activity: The tool provides the total percentage of CPU utiliza-

tion overtime.

3. Graphics utilization percentage: The tool provides the total percentage of

CPU utilization overtime.

4. Network activities: The tool also provides the total number of packets sent

and received along with the total size in bytes for all packets.

www.manaraa.com

74

For our analysis, we used all the listed metrics to energy profile the apps running on

our iPad Air.

4.5 Case Studies

Using the quantitative analysis approach as described in Section 4.4, we selected eight

application categories for our case studies. The scenarios selected are: browsers, video

streaming, music streaming, maps, video chatting, cloud storage, social networking,

and e-mail scenarios. We chose these eight scenarios because they represent the

majority of categories used by mobile device users.

For each scenario, we selected a list of most popular applications and ran the

identical applications on all platforms, where applicable. For instance, we ran Face-

book on all three platforms; however, even though Amazon Instant Video is a very

popular app, it does not have a version for Android. As a result, we only ran it on

iPad and Surface 2 Pro. Another example is YouTube, which we did not profile the

app version on Surface 2 Pro. This was because all currently available metro apps

with some YouTube-name flavor claimed to be capable of running YouTube videos,

but they were not the authentic app.

We also profiled the native app in addition to the version that can run through

a browser. For all the apps running using a browser, we chose Chrome with a single

tab open since the latter has a version specific to each platform.

The list of apps and corresponding version per scenario and per platform are listed

in Table 4.3. Please note that when we rank the energy efficiency of an application

and compare it to the energy efficiency of another application, we always rank them

from the most energy efficient to the least energy efficient.

www.manaraa.com

75

Scenario Platform App Version

Browsers

Surface 2 Pro
Chrome 33.0.1750.146

Internet Explorer 11 11.0.9600.16518
Mozilla Firefox 24.0

iPad Air
Chrome 32.1700.20

Bing 2.0.2
Safari 7.0.6

Nexus 7
Chrome 33.0.1750.136

Bing 4.2.3.20140303
Mozilla Firefox 27.0

Video Streaming

Surface 2 Pro

Amazon Ubox Video 2.2.0.153
Amazon (browser) Accessed: Feb 8, 14

Netflix 2.3.0.12
Netflix (browser) Accessed: Feb 8, 14

YouTube (browser) Accessed: Feb 8, 14

iPad Air

Amazon Instant Video 2.4
Netflix 5.1.2

YouTube 2.2.0
YouTube (browser) Accessed: Feb 8, 14

Nexus 7
YouTube 5.3.32

YouTube (browser) Accessed: Feb 8, 14
Netflix 3.2.1 build 1346

Music Streaming

Surface 2 Pro
Pandora (browser) Accessed: Feb 9, 14

Spotify 0.9.7.16.g4b197456
XBOX Music 2.2.444.0

iPad Air
Spotify 0.9.3
iTune 7.0.6

Pandora 5.2

Nexus 7
Spotify 0.7.6.357
Pandora 5.2

Xbox Music 2.0.40226

Map

iPad Air
Apple Maps 7.0.6
Google Maps 2.7.4

Waze 3.7.8

Nexus 7
Waze 3.7.7.0

Google Maps 7.0.1

Video Chatting

Surface 2 Pro
Hangouts 1.0.0.2

Skype 2.4.0.1007

iPad Air
Skype 4.17.126

Hangouts 1.3.2

Nexus 7
Skype 4.6.0.42007

Hangouts 1.0.2.717155

Cloud Storage

Surface 2 Pro

Dropbox 2.0.0.0
Dropbox (browser) Accessed: Feb 9, 14

Google Drive (browser) Accessed: Feb 9, 14
SkyDrive 6.3.9600.16384

iPad Air

SkyDrive 4.0.1
Dropbox 3.0.3

Dropbox (browser) Accessed: Feb 9, 14
Google Drive 2.2.3

Google Drive (browser) Accessed: Feb 9, 14

Nexus 7

Google Drive 1.2.563.31
SkyDrive 1.1
Dropbox 2.3.12.10

Dropbox (browser) Accessed on: Feb 9, 14

Social Networking

Surface 2 Pro

LinkedIn HD 1.0.0.0
LinkedIn (browser) Accessed: Feb 15, 14

Facebook 1.2.0.12
Facebook (browser) Accessed: Feb 15, 14

iPad Air

LinkedIn 86
LinkedIn (browser) Accessed: Feb 15, 14

Facebook 7.0
Facebook (browser) Accessed: Feb 15, 14

Nexus 7

Facebook 6.0.0.28.28
Facebook (browser) Accessed: Feb 15, 14

LinkedIn 3.3.1
LinkedIn (browser) Accessed: Feb 15, 14

E-mail

Surface 2 Pro
GMail Touch 1.0.0.46

GMail (browser) Accessed: Feb 16, 14
Windows Mail 17.5.9600.20315

iPad Air
Apple Mail 7.0.6

GMail 2.71828.0
GMail (browser) Accessed: Feb 16, 14

Nexus 7
GMail 4.7.2 (967015)

GMail (browser) Accessed: Feb 16, 14
Outlook.com 7.8.2.12.49.2176

Table 4.3: List of apps and corresponding version per scenario

4.5.1 Browsers Scenario

Our first set of case studies corresponds to browsers scenarios, where upon starting the

profiling tools on each platform, we started a 3-minute timer, launched the browser

www.manaraa.com

76

(set to default webpage set upon installation time), and kept the screen on until the

timer expired. Upon the timer expiration, we stopped profiling and saved the results.

Surface 2 Pro Browsers Results

We profiled the energy efficiency of the following browsers: Chrome, Chrome 3-tabs,

Internet Explorer (IE), IE 3-tabs, IE metro, Firefox, and Firefox-3 tabs. Figure 4.4

displays the energy consumption per browser for platform, package, core, and GPU.

Based on the results, we can rank their energy efficiency as follows: Chrome, Chrome-

3 tabs, IE, Firefox, IE-3 tabs, Firefox-3 tabs, IE metro.

In order to examine the cause of the difference in energy consumption, we exam-

ined core idle sleep states, package sleep states, core frequency, total hit count and

active duration, average wake-ups per second for package and cores, and timer reso-

lution as shown in Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10, respectively. It is evident

that Chrome, Chrome-3 tabs, IE, IE-3 tabs, and Firefox remained in approximately

the same percentage of the core and package idle sleep states, whereas, IE metro and

Firefox-3 tabs were in relatively much larger percentages.

IE versus IE 3-tabs: Even though IE and IE 3-tabs had similar active C-States,

the former one remained for 81.55% and 8.91% in 800 and 2,300 MHz, respectively,

whereas the latter remained for 39.33% and 54.95% in 800 and 2,300 MHz respectively.

This explains why IE consumed 28.43% less package energy than IE-3 tabs.

Firefox versus Firefox 3-tabs: The other noteworthy observation is that Fire-

fox 3-tabs has less active duration compared to Firefox with a single tab, however,

Firefox 3-tabs consumed more energy. We can attribute the difference by examin-

ing the number of core and package wakeups, in addition to the timer resolution of

both test cases. Even though, Firefox has less active duration, it causes less average

wakeups per second to package and core, which enabled the relatively small percent-

age of active time of the core and package. On the other hand, Firefox 3-tabs spent

50.86% of the time in 1 ms resolution, resulting in a larger average of core and package

www.manaraa.com

77

Figure 4.4: Energy consumed by Surface 2 Pro during browsers scenario.

wakeups per second, which in turn increased the package and core active states.

Firefox 3-tabs versus Chrome: The observation of Firefox-3 tabs contradicts,

at first glance, with Chrome results which spent 99.81% in 1 ms timer resolution

and caused the highest percentage of wakeups while having the same active dura-

tion. However, Chrome (1 and 3 tabs) still had a lower percentage of active cores

and package compared to Firefox 3 tabs and was much more energy efficient. This

contradicting observation was justified once we examined the number of threads for

each browser. Chrome had distributed its activities to seven threads, whereas Firefox

only had one thread. As a result, Chrome took advantage of concurrency and thus

performed the work concurrently on the cores, which enabled both cores to go to sleep

for longer duration and thus enabled the package to remain in sleep states for a long

duration. On the other hand, Firefox 3-tabs did not take advantage of concurrency,

resulting in unbalanced core active duration, leading to a high percentage of package

active time, which caused the increase in frequency, which was directly translated to

higher energy consumption.

www.manaraa.com

78

Figure 4.5: Idle sleep states percentage per core collected on Surface 2 Pro during
browsers scenario.

Figure 4.6: Package idle sleep states percentage collected on Surface 2 Pro during
browsers scenario.

www.manaraa.com

79

Figure 4.7: Core frequency distribution collected on Surface 2 Pro during browsers
scenario.

Figure 4.8: Total hit count and busy duration in milliseconds collected on Surface
2 Pro during browsers scenario.

www.manaraa.com

80

Figure 4.9: Average package and core wakeups per second collected on Surface 2
Pro during browsers scenario.

Figure 4.10: Percentage of time spent in each timer resolution interval.

www.manaraa.com

81

iPad Air Browsers Results

We profiled the energy efficiency of the following browsers: Chrome, Chrome-3 tabs,

Bing, Safari, and Safari-3 tabs. Figure 4.11 displays the variation of energy levels

during the entire test duration. The average energy level is 3.87, 6.27, 2.65, 1.22,

and 1.29 for Chrome, Chrome 3-tabs, Bing, Safari, and Safari 3-tabs, respectively.

As a result, we can rank the energy efficiency as follows: Safari, Bing, Chrome. One

noteworthy observation is that Chrome consumed 62.05% more energy when we added

two extra tabs, whereas Safari only consumed 5.4% more energy when we added the

two extra tabs.

In order to examine the cause of the differences in energy consumption, we first

examined the total CPU activity percentages and graphics activity percentages for all

browsers cases, as shown in Figures 4.12 and 4.13. The average total CPU activities

are 3.16%, 3.38%, 7.55%, 2.94%, and 3.29% for Chrome, Chrome 3-tabs, Bing, Safari,

and Safari 3-tabs, respectively. The average graphics activities for the same order of

browsers are 2.2%, 2.39%, 7.01%, 2.13%, and 2.32%, respectively.

Bing versus Chrome: By examining the results, we noticed that Bing actually

had the highest CPU and graphics activities, which at first glance contradicts our

first finding that it is the second most efficient browser. As a result, we examine

the network activity as well. We noticed that the pattern of network activities is

different among browsers. In particular, Chrome received and sent very consecutive

large network packets after launching the browser 11,790.31, 4.91, and 12.18 kilobytes

in and 885.49, 3.23, and 3.56 kilobytes out. Then, it periodically sent and received

very small packets (80 bytes) at an approximate 30-second intervals. On the other

hand, Bing sent and received relatively smaller packets after launching the browser.

It received in consecutive order 260.9, 194.7, and 90.19 kilobytes and received 11.79,

16.38, and 11.02 kilobytes. Then, it periodically received very small packets (60 bytes)

at an approximate 2-second interval.

www.manaraa.com

82

Figure 4.11: Energy level collected on iPad Air 2 during browsers scenario using
Instrument.

Figure 4.12: Total CPU activity percentage collected on iPad Air 2 during browsers
scenario using Instrument.

www.manaraa.com

83

Figure 4.13: Graphics activity percentage collected on iPad Air 2 during browsers
scenario using Instrument.

Nexus 7 Browsers Results

We profiled the energy efficiency of the following browsers: Chrome, Chrome-3 tabs,

Bing, Firefox, and Firefox-3 tabs. Figure 4.16 represents the percentage of CPU uti-

lization over time, and Table 4.4 represents the power metrics collected using Trepn.

Based on the results, we can rank the energy efficiency of browsers as follows: Firefox

3-tabs, Firefox, Chrome, Chrome 3-tabs, and Bing. In order to explain the results,

we also examined the core C-states percentages in addition to the core frequency as

shown in Figures 4.15 and 4.14, respectively.

Firefox 3-tabs versus Firefox: We observed that Firefox 3-tabs is more energy

efficient than Firefox with a single tab because the average CPU utilization increased

in the case of 3 tabs, leading to an increase in CPU frequency which lead to an

increase in performance, which was translated to less core active duration. The other

major observation is the increase of average power consumed between Chrome and

Chrome-3 tabs, which was 57.99%. This is due to almost tripling the average CPU

utilization, which caused the percentage of high frequency to increase, in addition to

the doubling of CPU active duration.

Chrome versus Bing: We also observed huge differences between the average

www.manaraa.com

84

power consumption between Chrome and Bing, where Bing consumed more than

triple the amount of power than Chrome. The huge differences can be attributed to

the fact that Chome has a higher multithreading index than Bing, which explains

why Chrome had a large average virtual memory utilization but very low average

CPU utilization. On the other hand, Bing had the lowest amount of threads with the

highest CPU average utilization and the lowest virtual memory utilization.

Figure 4.14: Percentage of time spent in each frequency collected on Nexus 7 during
browsers scenario using PowerMon.

Figure 4.15: Percentage of time spent in each C-State per core collected on Nexus 7
during browsers scenario using PowerMon.

www.manaraa.com

85

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Chrome 237,143 0.68 2966.63 88 1171

Chrome 3 Tabs 374,667 1.99 1989 66 1401
Bing 745,017 7.04 912 20 0

Firefox 235,691 0.09 1943 53 0
Firefox 3 Tabs 221,042 0.31 1955 52 0

Table 4.4: Power metrics collected on Nexus 7 during browser scenario using Trepn.

Figure 4.16: Percentage of CPU utilization collected on Nexus 7 during browser
scenario using Trepn.

Cross-Platform Comparison for Browsers Scenario

In order to compare the energy efficiency of browser cross platforms, we provide Table

4.5. Even though Chrome was the most energy-efficient browser on Surface 2 Pro,

Safari was the most energy-efficient browser on iPad Air, and Firefox was the most

energy-efficient browser on Nexus 7.

www.manaraa.com

86

Application Surface 2 Pro iPad Air Nexus 7
Chrome Rank 1 Rank 4 Rank 3

Chrome 3-tabs Rank 2 Rank 5 Rank 4
IE Rank 3 N/A N/A

IE 3-tabs Rank 5 N/A N/A
IE Metro Rank 7 N/A N/A
Firefox Rank 4 N/A Rank 2

Firefox 3-tabs Rank 6 N/A Rank 1
Bing N/A Rank 3 Rank 5
Safari N/A Rank 1 N/A

Safari 3-tabs N/A Rank 2 N/A

Table 4.5: Cross-platform browsers energy-efficiency ranking.

4.5.2 Video Streaming Scenario

Our second set of case studies are the video streaming scenarios, where upon starting

the profiling tools on each platform, we started a 5-minute timer. We launched the app

and selected a video, then ran the video in full screen mode until the timer expired.

Next, we stopped the collection and saved the results. In the case of accessing the

streaming video via a browser, we first launched the browser and typed the user name

and password. Then, we started the profiling tool along with a 5-minute timer. Next,

we launched the browser and clicked on sign in. We selected the video to stream,

clicked on it, and put the video in full-screen mode until the timer expired. Next, we

stopped the collection and saved the results. We ran ”The Lorax” using Amazon and

Netflix, and we ran ”Elephant Dreams” using YouTube.

Surface 2 Pro Video Streaming Results

We profiled the energy efficiency of the following video streaming apps: Amazon

running on desktop, Amazon running in a browser, Netflix running as a metro app,

Netflix running in a browser, and YouTube running in a browser. Based on the

energy consumption values as shown in Figure 4.17, we can rank the energy efficiency

of the video streaming as follows: Netflix metro, Amazon desktop, YouTube browser,

Netflix browser, and Amazon browser. In order to explain the differences in energy

www.manaraa.com

87

consumption, we examined core idle sleep states, package sleep states, core frequency,

total hit count and active duration, average wake-ups per second for package and

cores, and timer resolution percentage, as shown in Figures 4.18, 4.19, 4.20, 4.21,

4.22, and 4.23, respectively.

Amazon desktop versus Amazon browser and Netflix metro versus Net-

flix browser: By interpreting the results of video streaming test cases, we first no-

ticed that streaming a video using an app consumes significantly less energy when

compared to streaming using a browser, as shown in Figure 4.17. For instance, when

streaming the same video using the Amazon desktop app, the package and GPU

consumed 33.91% and 17.64% less energy, respectively, compared to streaming using

a browser. Similarly, when streaming the same video using the Netflix metro app,

the package and GPU consumed 39.46% and 11.57% less energy, respectively, com-

pared to streaming using a browser. In addition, since both Amazon and Neflix were

streaming the same video ”The Lorax,” we determined that Netflix is more energy

efficient than Amazon.

Amazon versus Netflix: We noticed that even though cores were active for

approximately the same percentage of time when comparing Amazon and Netflix,

package active time percentage for Netflix is less than Amazon, which means utiliza-

tion of concurrent cores in Netflix is better than Amazon. In addition, running apps

in native mode (desktop or metro), as opposed to browser mode, allowed the cores

to be in low frequency value for greater duration than the case when streaming was

done via a browser. Moreover, total time in active duration during Amazon and Net-

flix was only different by 1.04% and 1.18% when comparing both apps during native

and browser case,s respectively; however, the average wake-ups per second was much

higher in the case of Amazon when compared to Netflix, which explains why Netflix

is more energy efficient than Amazon. Finally, the cause of low wake-ups per seconds

in the case of Netflix is due to the fact that Netflix kept the timer resolution interval

at 15.6 ms, unlike the different apps, which changed it to 1.0 ms.

www.manaraa.com

88

Figure 4.17: Energy consumed by Surface 2 Pro during video streaming scenario.

Figure 4.18: Idle sleep states percentage per core collected on Surface 2 Pro during
video streaming scenario.

www.manaraa.com

89

Figure 4.19: Package idle sleep states percentage collected on Surface 2 Pro during
video streaming scenario.

Figure 4.20: Core frequency distribution collected on Surface 2 Pro during video
streaming scenario.

www.manaraa.com

90

Figure 4.21: Total hit count and total active duration in milliseconds collected on
Surface 2 Pro during video streaming scenario.

Figure 4.22: Average package and core wakeups per seconds collected on Surface 2
Pro during video streaming scenario.

Figure 4.23: Percentage of time spent in each timer resolution interval.

www.manaraa.com

91

iPad Air Video Streaming Results

We profiled the energy efficiency of the following video streaming apps: Amazon

instant movies, Netflix, YouTube app, and YouTube running using a browser. Figure

4.24 displays the variation of energy consumed during the entire test duration. The

average energy level is 10.73%, 10.38%, 10.47%, and 10.71% for Amazon, Netflix,

YouTube app, and YouTube running using a browser, respectively. As a result, we

can rank the energy efficiency of video streaming as follows: Netflix, YouTube app,

YouTube browser, and Amazon. By examining the results, it is also evident that

streaming a video using a native tool is more energy efficient then running using a

browser. In order to examine the cause of the differences in energy consumption,

we examined the total CPU activity percentages and graphics active percentages

for all our test cases, as shown in Figures 4.25 and 4.26, respectively. The average

total CPU activities are 41.56%, 10.23%, 26.16%, and 17.33% for Amazon, Netflix,

YouTube app, and YouTube browser, respectively. The average graphics activities

for the same order of video streaming apps are: 5.99%, 4.99%, 8.59%, and 7.00%,

respectively.

Amazon versus Netflix: By examining the results, we noticed that even though

Amazon and Netflix were streaming the same video, the Amazon percentage of CPU

and graphics utilization was much higher than that for Netflix. As a result, the

difference in CPU and GPU activities percentages can explain why Netflix is more

energy efficient than Amazon.

YouTube app versus YouTube browser: Even though streaming the same

video using YouTube app was more energy efficient than streaming using a browser,

however, streaming a video using a Youtube browser had less percentage of CPU and

graphics utilization than streaming via the YouTube app. As a result, we also exam-

ined the network activities. We noticed that YouTube app was constantly receiving

packets with occasional 0 packets received. On the other hand, streaming using a

browser, led to much larger size of packets received at the beginning of the run (due

www.manaraa.com

92

to large buffering of the video), then throughout the test, there were long duration

of 0 packet transmissions (20 seconds) followed by a 5 seconds of active receiving. In

theory, this method should enable the Wi-Fi radio to go to low-power states for an

extended duration, thus reducing the energy consumption of the platform. However,

by buffering a large size of data, that led to more utilization of memory, which nulli-

fied the savings from the sleep states of Wi-Fi radio and instead lead to causing more

energy consumption of the platform.

Figure 4.24: Energy level collected on iPad Air 2 during video streaming scenario
using Instrument.

Figure 4.25: Total CPU activity percentage collected on iPad Air 2 during video
streaming scenario using Instrument.

www.manaraa.com

93

Figure 4.26: Graphics activity percentage collected on iPad Air 2 during video
streaming scenario using Instrument.

Nexus 7 Video Streaming Results

We profiled the energy efficiency of the following video streaming apps: YouTube app,

YouTube running in a browser, and Netflix app. Figure 4.27 represents the percentage

of CPU utilization over time, and Table 4.6 represents the power metrics collecting

using Trepn. We can rank the energy efficiency of video streaming apps as follows:

YouTube app, Netflix app, and YouTube browser. In order to explain the results,

we also examined the core C-states percentages in addition to the cores’ frequency,

as shown in Figures 4.31 and 4.30. We also examined the GPU load percentage in

addition to its frequency, as shown in Figures 4.28 and 4.29.

YouTube app versus YouTube browser: First of all, in terms of GPU load

percentage and GPU frequency, YouTube app and browser exhibited the exact same

pattern, which completely overlapped on both of the graphs that represent the GPU

metrics. As a result, we examined the remaining metrics. YouTube app had a higher

CPU utilization percentage than YouTube browser, which cased the core to remain

for 38.22% in 1512 MHz. Core 0 remained in active state for 52.87% of the time. On

the other hand, YouTube running in a browser had less CPU utilization, which only

triggered the CPU to remain in 1512 MHz for 23.77% but lead core 0 to remain active

for 57.05% of the time. On the other hand, YouTube using a browser utilized more

www.manaraa.com

94

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
YouTube App 1,280,419 1.91 1003.22 65 0

YouTube 1,468,170 1.17 2146 77 1515
Browser

Netflix App 1,387,066 3.04 1023.78 65 0

Table 4.6: Power metrics collected on Nexus 7 during video streaming scenario
using Trepn.

virtual memory than the app version, which confirmed the observation we noticed in

the case of iPad (higher buffer percentage using a browser leading to more memory

utilization compared to the app version.) Finally, all this information can explain the

reason behind the differences in the energy efficiency of running YouTube via an app

and via the browser.

YouTube app versus Netflix app: We also examined the differences between

YouTube and Netflix. Both apps had very close numbers related to average virtual

memory utilization, thread count, and total wakelocks. However, YouTube app had

lower CPU percentage utilization and greater GPU load percentage compared to

Netflix. That means that YouTube had better offloading from CPU to GPU algorithm

compared to Netflix. Moreover, even though YouTube managed to have a higher GPU

load compared to Netflix, it also managed to have lower GPU frequency than Netflix

as well. The combination of all this information can explain why YouTube is more

energy efficient than Netflix.

www.manaraa.com

95

Figure 4.27: Percentage of CPU utilization collected on Nexus 7 during video
streaming scenario using Trepn.

Figure 4.28: Percentage of GPU load collected on Nexus 7 during video streaming
scenario using Trepn.

Figure 4.29: GPU frequency collected on Nexus 7 during video streaming scenario
using Trepn.

www.manaraa.com

96

Figure 4.30: Percentage of time spent in each frequency collected on Nexus 7 during
video streaming scenario using PowerMon.

Figure 4.31: Percentage of time spent in each C-State per core collected on Nexus 7
during video streaming scenario using PowerMon.

Cross-Platform Comparison for Video Streaming Scenario

In order to compare the energy efficiency of video streaming apps cross platforms, we

provide Table 4.7. We noticed that Netflix app ranked number 1 in energy efficiency

on Surface 2 Pro and iPad Air, however, its ranking dropped to number 2 on Nexus

7, where YouTube app was ranked number 1.

www.manaraa.com

97

Application Surface 2 Pro iPad Air Nexus 7
Amazon Rank 2 Rank 4 N/A

Amazon (browser) Rank 5 N/A N/A
Netflix Rank 1 Rank 1 Rank 2

Netflix (browser) Rank 4 N/A N/A
YouTube N/A Rank 2 Rank 1

YouTube (browser) Rank 3 Rank 3 Rank 3

Table 4.7: Cross platform video streaming apps energy efficiency ranking.

4.5.3 Music Streaming Scenario

Our third set of case studies are the music streaming scenarios, where we started

streaming music using an app (or browser). Next, we started the profiling tool along

with a 5-minute timer. Next, we relaunched the streaming app (browser) until the

expiration of the timer. Then, we stopped the collection and saved the results.

Surface 2 Pro Music Streaming Results

During the music streaming scenario running on Surface 2 Pro, we selected three apps

running using three different means: browser, desktop, and metro. By comparing

the energy consumption as shown in Figure 4.32, we noticed that streaming music

using metro style apps was the most energy efficient as opposed to streaming using

a browser, which was the most energy inefficient. In order to explain the results, we

examine core idle sleep states, package sleep states, frequency, hit count and total

active duration, average wake-ups per package and per core, and timer resolution

percentages, as shown in Figures 4.33, 4.34, 4.35, 4.36, 4.37, and 4.38, respectively.

XBOX versus Pandora and Spotify: We noticed that the percentage of core

sleep states and package sleep states reflect the same pattern as energy consumption;

however, XBOX metro app remained in greater percentage of time in high frequency.

This means, that using XBOX metro, the performance is increased for a short duration

in order to efficiently complete the task and allow the cores and package to go to sleep

for a longer duration. On the other hand, the other two models (browser and desktop),

remained in low performance state for a longer duration, resulting in longer duration

www.manaraa.com

98

in core and package active states.

Spotify versus Pandora: Moreover, we noticed that Spotify caused much more

wake-ups to the core and package compared to Pandora, which could have potentially

lead to much-higher energy consumption; however, since the total active time dura-

tion of Spotify is 25.21% less than Pandora, it offset the possibility of larger energy

consumption. The large number of wake-ups caused by Spotify can be attributed to

the application’s change of the timer resolution interval from 15.6 ms to 1.0 ms for

the majority of test duration.

Spotify versus XBOX: We also noticed that Spotify had seven different thread

processes compared to two for XBOX. Using these results, since Spotify was only

active for relatively short duration but with relatively high wake-ups, high number of

threads, and short timer resolution interval, we conclude that Spotify can increase its

energy efficiency by decreasing the number of wakeups through better synchronization

of its threads and larger timer-resolution intervals.

Figure 4.32: Energy consumed by Surface 2 Pro during music streaming scenario.

www.manaraa.com

99

Figure 4.33: Idle sleep states percentage per core collected on Surface 2 Pro during
music streaming scenario.

Figure 4.34: Package idle sleep states percentage collected on Surface 2 Pro during
music streaming scenario.

www.manaraa.com

100

Figure 4.35: Core frequency distribution collected on Surface 2 Pro during music
streaming scenario.

Figure 4.36: Total hit count and busy duration in milliseconds collected on Surface
2 Pro during music streaming scenario.

iPad Air Music Streaming Results

We profiled the energy efficiency of the following music streaming apps: Spotify,

iTunes, and Pandora. Figure 4.39 displays the variation of energy consumption levels

during the entire test duration. The average energy level is 5.35%, 3.50%, and 8.77%

for Spotify, iTune, and Pandora, respectively. As a result, we can rank the energy

efficiency of music streaming apps as follows: iTunes, Spotify, and Pandora. In order

to examine the cause of the differences in energy consumption, we examined the total

CPU activity percentages and graphics active percentages for all our test cases as

shown in Figures 4.40 and 4.41, respectively.

www.manaraa.com

101

Figure 4.37: Average package and core wake-ups per seconds collected on Surface 2
Pro during music streaming scenario.

Figure 4.38: Percentage of time spent in each timer resolution interval.

www.manaraa.com

102

Pandora versus Spotify versus iTunes: We noticed a reverse order of CPU

utilization percentage compared to the app energy efficiency. This means that the

most energy-efficient app has the highest percentage of CPU utilization, whereas

the least energy-efficient app has the lowest percentage of CPU utilization. More

specifically, the average CPU utilization of Spotify, iTunes, and Pandora are 9.22%,

13.01%, and 9.18%, respectively. Based on these results, the least energy-efficient

app (Pandora) had the least CPU utilization, whereas, the most energy-efficient app

(iTunes) was consuming the most CPU utilization. As a result, we examined the

network activity patterns which revealed that iTunes had sent and received during

long timer intervals large packets while at 2-second intervals received a small packet

of 60 bytes. On the other hand, Pandora, sent out at regular 1-second intervals 166

bytes while sending and receiving during long timer intervals large packets similar to

iTunes. Therefore, we can conclude that Pandora consumed more energy than iTunes

because it kept the Wi-Fi radio at high power state for most of the test duration as

opposed to iTunes which allowed the Wi-Fi radio to go to lower power states at regular

intervals.

Figure 4.39: Energy level collected on iPad Air 2 during music streaming scenario
using Instrument.

www.manaraa.com

103

Figure 4.40: Total CPU activity percentage collected on iPad Air 2 during music
streaming scenario using Instrument.

Figure 4.41: Graphics activity percentage collected on iPad Air 2 during music sce-
nario using Instrument.

Nexus 7 Music Streaming Results

We profiled the energy efficiency of the following music streaming apps: Pandora,

Spotify, and XBOX music. Figure 4.92 represents the percentage of CPU utilization

over time, and Table 4.8 represents the power metrics collected using Trepn. Based

on the results, we can rank the energy efficiency from the most energy efficient to the

least energy efficient as XBOX, Spotify, and Pandora. In order to explain the results,

we also examined the core C-states percentages in addition to the cores frequency, as

shown in Figures 4.43 and 4.42.

www.manaraa.com

104

Figure 4.42: Percentage of time spent in each frequency collected on Nexus 7 during
Music Streaming scenario using PowerMon.

Pandora: Even though Pandora had the least CPU usage, it kept the core in

active state for the longest duration, which can be attributed to having the greatest

number of wakelocks. In addition, it kept the CPU in high frequency for 39% of the

duration which is around double the percentage than the other two apps.

XBOX versus Spotify: On the other hand, even though XBOX was the most

energy efficient, music streaming had many interrupts, which we can attribute to

the low average virtual memory usage compared to Spotify. The low average virtual

memory means that XBOX experienced poor buffering of music. Therefore, XBOX

sacrificed the user experience by optimizing the energy efficiency. Therefore, if we

rank the combination of energy efficiency and user experience, Spotify takes the first

spot, followed by Pandora, and followed by XBOX.

Cross-Platform Comparison for Music Streaming Scenario

In order to compare the energy efficiency of music streaming apps cross platforms, we

provide Table 4.9. We noticed that on all platforms, Pandora was the least energy

efficient app. In addition, even though XBOX is ranked number 1 on Nexus 7 and

www.manaraa.com

105

Figure 4.43: Percentage of time spent in each C-State per core collected on Nexus 7
during music streaming scenario using PowerMon.

Figure 4.44: Percentage of CPU utilization collected on Nexus 7 during music
streaming scenario using Trepn.

www.manaraa.com

106

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Pandora 705,156 0.59 973.38 42 1714
Spotify 683,714 4.01 1860.03 107 1646
XBOX 483,612 2.08 981.23 45 1550

Table 4.8: Power metrics collected on Nexus 7 during music streaming scenario
using Trepn.

Application Surface 2 Pro iPad Air Nexus 7
Pandora N/A Rank 3 Rank 3

Pandora (browser) Rank 3 N/A N/A
Spotify Rank 2 Rank 2 Rank 2
XBOX Rank 1 N/A Rank 1
iTune N/A Rank 1 N/A

Table 4.9: Cross platform music streaming apps energy efficiency ranking.

Surface 2 Pro, XBOX rank needs to be downgraded in the case of Nexus 7 because

XBOX had quality of service (QoS) issues.

4.5.4 Map Scenario

Our fourth set of case studies are the map scenarios where we started the profiling

tool along with a 3-minute timer, launched the mapping app, typed an address (same

for all apps), started routing, and kept the screen on until the expiration of the timer.

Then, we stopped the collection and saved the results.

Surface 2 Pro Map Results

We tried running two different apps on Surface 2 Pro, which are Google Maps and

Windows Maps. However, we were not able to start any routes. As a result, we disre-

garded all the maps results for this platform since they did not match the collection

on the other two platforms.

www.manaraa.com

107

iPad Air Map Results

We profiled the energy efficiency of the following map apps: Apple Maps, Google

Maps, and Waze. Figure 4.45 displays the variation of energy consumption levels

during the entire test duration. The average energy level is 8.28%, 8.72%, and 8.59%,

respectively. As a result, we can rank the energy efficiency of map apps as follows:

Apple Maps, Waze, and Google Maps. In order to examine the cause of the differences

in energy consumption, we examine the total CPU and graphics activity percentages

for all our test cases, as shown in Figures 4.46 and 4.47, respectively.

Google maps versus Apple maps: Similar to the music streaming case sce-

narios, we noticed that the most energy-efficient apps also had the highest CPU and

graphics utilization percentages, whereas the least energy-efficient apps had the low-

est CPU and graphics utilization percentages. As a result, we examined the network

activity pattern. We noticed that in the case of Google Maps, at an approximate

interval of 5 seconds, there is an average of 17,149 bytes received and an average

of 2,248 bytes sent, and at about 2-second intervals, there is an average of 60 bytes

received. Also, at approximately 40-second intervals, there is an average of 859 bytes

received and 288 bytes sent. On the other hand, Apple maps had a consecutive pack-

ets sent and received during 5 seconds interval of medium size of an average 180 bytes

followed by a duration of approximately 40 seconds with absolutely no packets sent or

received. Then, again, a busy 5-second duration where medium size packets are sent

and received, followed by the 40 seconds of no activities. This pattern was repeated

for the entire test duration. These network activity patterns can explain why Apple

maps was the most energy efficient even though it had the highest CPU and graphics

utilization. Apple maps enabled the Wi-Fi radio to go to deep sleep states for much

longer than Google maps. As a result, it reduced the energy consumption of the

Wi-Fi radio resulting in reduction of the entire platform power consumption despite

the increase in CPU and graphics utilization.

www.manaraa.com

108

Figure 4.45: Energy level collected on iPad Air 2 during map scenario using Instru-
ment.

Figure 4.46: Total CPU activity percentage collected on iPad Air 2 during map
scenario using Instrument.

Figure 4.47: Graphics activity percentage collected on iPad Air 2 during map sce-
nario using Instrument.

www.manaraa.com

109

Nexus 7 Map Results

We profiled the energy efficiency of the following mapping apps: Waze and Google

Maps. Figures 4.50, 4.49, and 4.48 represent the percentage of CPU utilization over

time, core C-states, and frequency, respectively. Table 4.10 represents the power

metrics collected using Trepn. Based on the results, Waze is more energy efficiently

than Google Maps. As a matter of fact, Google maps consumed on average more than

double the power consumed by Waze. This is attributed to the fact that Waze had

less percentage of active C-States and less percentage of high frequency compared to

Google Maps.

Figure 4.48: Percentage of time spent in each frequency collected on Nexus 7 during
Map scenario using PowerMon.

www.manaraa.com

110

Figure 4.49: Percentage of time spent in each C-State per core collected on Nexus 7
during Map scenario using PowerMon.

Figure 4.50: Percentage of CPU utilization collected on Nexus 7 during map scenario
using Trepn.

www.manaraa.com

111

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Waze 243,119 1.82 1033.47 28 1

Google Maps 656,168 2.09 1002.02 50 1218

Table 4.10: Power metrics collected on Nexus 7 during map scenario using Trepn.

Application iPad Air Nexus 7
Apple Maps Rank 1 N/A

Waze Rank 2 Rank 1
Google Maps Rank 3 Rank 2

Table 4.11: Cross-platform map apps energy efficiency ranking.

Cross-Platform Comparison for Map Scenario

In order to compare the energy efficiency of map apps cross platforms, we provide

Table 4.11. We noticed that Google Maps was the least energy-efficient app on both

iPad and Nexus 7. In addition, Waze ranked higher on the energy efficiency scale

compared to Google Maps.

4.5.5 Video Chatting Scenario

Our fifth set of case studies are the video chatting scenarios, where we started the

power profiling tool along with a 5-minute timer, launched the video chatting app,

initiated an invite for a video chatting session, and had a second user accept the

invite. Then, upon the timer expiration, we stopped profiling and saved the results.

Surface 2 Pro Video Chatting Results

During our experiment for video chatting scenarios on Surface 2 Pro, we used Skype

as a metro app, and Hangout, a metro app which upon launching a video chatting

session, launches a browser. By comparing the results, we noticed that hangout

consumed more energy than Skype, as shown in Figure 4.51. In order to explain

the results, we examined core idle sleep state, package sleep states, frequency, and

www.manaraa.com

112

average wake-ups per package and per core, as shown in Figures 4.52, 4.53, 4.54, and

4.55, respectively.

Skype vs Hangout: We noticed that both cores and package remained for

longer duration in active states when comparing Hangout to Skype. Similarly, Hang-

out caused the cores to remain in high performance states for the majority of the

test duration, unlike Skype. For instance, Skye remained for 79.96% and 3.48% in

800 MHz and 2300 MHz, respectively, whereas Hangout remained for 10.73% and

51.53% in 800 MHz and 2300 MHz, respectively. Finally, average wakeups per pack-

age for Skype and Hangout as shown in Figure 4.55 are similar. These values are not

surprising even though Skype and Hangout consume different energy. The average

wakeups are lower than expected in the case of Hangout, which can be attributed to

the greater percentage of active package, which resulted in less percentage of sleep

time, and thus less opportunity to wake the package and core. Finally, based on our

previous test case scenarios, we can predict that the energy efficiency of Hangout can

be increased if the app is implemented to be completely native due to the expected

higher energy consumption values when comparing native to browser based apps.

Figure 4.51: Energy consumed by Surface 2 Pro during video chatting scenario.

www.manaraa.com

113

Figure 4.52: Idle sleep states percentage per core collected on Surface 2 Pro during
video chatting scenario.

Figure 4.53: Package idle sleep states percentage collected on Surface 2 Pro during
video chatting scenario.

Figure 4.54: Core frequency distribution collected on Surface 2 Pro during video
chatting scenario.

www.manaraa.com

114

Figure 4.55: Average package and core wake-ups per seconds collected on Surface 2
Pro during video chatting scenario.

iPad Air Video Chatting Results

We profiled the energy efficiency of the following video chatting apps: Hangout and

Skype. Figure 4.56 displays the variation of energy consumption levels during the

entire test duration. The average energy level is: 14.56 and 14.95 for Hangout and

Skype, respectively. Thus, Hangout is more energy efficient than Skype. In order

to examine the cause of the difference in energy consumption, we examined the to-

tal CPU activity percentages as shown in Figure 4.57, which showed an average of

40.25% and 57.75% for Hangout and Skype, which support the differencse in energy

consumption.

www.manaraa.com

115

Figure 4.56: Energy level collected on iPad Air 2 during video chatting scenario
using Instrument.

Figure 4.57: Total CPU activity percentage collected on iPad Air 2 during video
chatting scenario using Instrument.

Nexus 7 Video Chatting Results

We profiled the energy efficiency of the following video chatting apps: Skype and

Hangout. Figures 4.58, 4.59, and 4.60 represent the percentage of CPU utilization

www.manaraa.com

116

over time, core C-states, and frequency, respectively. Table 4.12 represents the power

metrics collected using Trepn. Based on the results, Skype is much more energy

efficient than Hangouts, which is reflected in the average CPU utilization, average

virtual memory, total wakeups, percentage of high frequency, and percentage of active

cores.

Figure 4.58: Percentage of CPU utilization collected on Nexus 7 during browser
scenario using Trepn.

Figure 4.59: Percentage of time spent in each frequency collected on Nexus 7 during
video chatting scenario using PowerMon.

www.manaraa.com

117

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Skype 2,155,302 23.13 1000.56 40 1138

Hangout 3,184,398 34.65 1017.73 50 1441

Table 4.12: Power metrics collected on Nexus 7 during video chatting scenario using
Trepn.

Figure 4.60: Percentage of time spent in each C-State per core collected on Nexus 7
during video chatting scenario using PowerMon.

Cross-Platform Comparison for Video Chatting Scenario

In order to compare the energy efficiency of video chatting apps cross platforms, we

provide Table 4.13. We found out that Skype was 2:1 more energy efficient than

Hangout.

www.manaraa.com

118

Application Surface 2 Pro iPad Air Nexus 7
Hangouts Rank 2 Rank 1 Rank 2

Skype Rank 1 Rank 2 Rank 2

Table 4.13: Cross-platform video chatting energy efficiency ranking

4.5.6 Cloud Storage Scenario

During cloud storage scenario, we started the profiling tool along with the 3-minute

timer. Next, we launched the cloud storage app and kept the screen on. Upon the

expiration of the timer, we stopped the collection and saved the results. In the case of

accessing the cloud storage via a browser, we first launched the browser and typed the

user name and password. Then, we started the profiling tool along with the 3-minute

timer. Next, we launched the browser and clicked on sign in. We kept the screen on

until the timer expired. Next, we stopped the collection and saved the results. Please

note that all cloud storage accounts stored the same data size.

Surface 2 Pro Cloud Storage Results

We profiled the energy efficiency of the following: Dropbox metro, Dropbox accessed

through a browser, Google Drive accessed through a browser, and SkyDrive metro.

Based on the energy consumption values as shown in Figure 4.61, we can rank them

from the most energy efficient to the least as follows: SkyDrive, Dropbox metro,

Google Drive browser, and Dropbox browser. In order to examine the cause of the

difference in energy consumption, we examine core idle sleep states, package sleep

states, number of wakeups, total hit count and active duration, average wake-ups per

second for package and cores, and timer-resolution, as shown in Figures 4.62, 4.63,

4.64, 4.65, 4.66, 4.65, and 4.67, respectively.

Google Drive browser vs Dropbox browser: We noticed that the percentage

of active core and package C-States reflects the energy efficiency order of apps where

the most energy-efficient apps were active for the least time percentage and vice

versa. Likewise, the percentage of high frequency and total active duration reflect

www.manaraa.com

119

the application energy-efficiency order. However, the average number of wake-ups

per second in the case of DropBox accessed via a browser is less than Google Drive,

which is due to the fact that the Dropbox accessed via a browser was active for longer

duration, thus the platform didn’t go as often to sleep. As a result, there were fewer

opportunities to wake the package and core up because they were already active.

Dropbox and Skydrive versus Google Drive and Dropbox browser:

DropBox metro and SkyDrive did not change the timer resolution as the other two

apps, which changed it to 1.0 ms. As a result, they enabled the package and core

to remain in idle sleep states for longer duration than Dropbox browser, and Google

Drive, leading them to be more energy efficient than the later two.

Figure 4.61: Energy consumed by Surface 2 Pro during cloud storage scenario.

Figure 4.62: Idle sleep states percentage per core collected on Surface 2 Pro during
cloud storage scenario.

www.manaraa.com

120

Figure 4.63: Package idle sleep states percentage collected on Surface 2 Pro during
cloud storage scenario.

Figure 4.64: Core frequency distribution collected on Surface 2 Pro during cloud
storage scenario.

www.manaraa.com

121

Figure 4.65: Total hit count and busy duration in milliseconds collected on Surface
2 Pro during cloud storage scenario.

Figure 4.66: Average package and core wake-ups per seconds collected on Surface 2
Pro during cloud storage scenario.

Figure 4.67: Percentage of time spent in each timer resolution interval.

www.manaraa.com

122

iPad Air Cloud Storage Results

We profiled the energy efficiency of the following cloud storage cases: SkyDrive,

Dropbox accessed via a browser, Dropbox app, Google Drive accessed via a browser,

and Google drive app. Figure 4.68 displays the variation of energy consumption levels

during the entire test duration. The average energy level is: 1.93, 9.15, 11.02, 8.39,

and 8.42 for SkyDrive, Dropbox browser, Dropbox app, Google Drive browser, and

Google Drive app, respectively. Based on the results, we can rank the energy efficiency

of cloud storage apps as follows: SkyDrive, Google Drive App, Google Drive browser,

Dropbox browser, and Dropbox app. In order to examine the cause of the differences

in energy consumption, we examined the total CPU utilization and graphics activity

percentages for all our test cases, as shown in Figure 4.69 and 4.70, respectively.

The average CPU utilization is 3.88%, 9.81%, 9.71%, 3.97%, and 4.38%, and average

graphics activity is 2.44%, 5.09%, 6.42%, 2.73%, and 2.45% for SkyDrive, Dropbox

browser, Dropbox app, Google Drive browser, and Google drive app, respectively.

Dropbox app vs Dropbox browser: The only contradicting observation be-

tween this case scenario and all previous scenarios (where apps were more energy

efficient than accessing content using a browser), is that Dropbox browser is more en-

ergy efficient than Dropbox app. By analyzing the results, we found out that average

CPU utilization percentages still align with our previous observations where browser

version utilized more CPU time, however, the app version had a sophisticated user

interface leading to higher average graphics utilization percentage. Thus, it required

more energy than the browser version for rendering and reduced the overall energy

efficiency.

www.manaraa.com

123

Figure 4.68: Energy level collected on iPad Air 2 during cloud storage scenario using
Instrument.

Figure 4.69: Total CPU activity percentage collected on iPad Air 2 during cloud
storage scenario using Instrument.

www.manaraa.com

124

Figure 4.70: Graphics activity percentage collected on iPad Air 2 during cloud stor-
age scenario using Instrument.

Nexus 7 Cloud Storage Results

We profiled the energy efficiency of the following cloud storage apps: Google Drive

app, SkyDrive app, Dropbox app, and Dropbox accessed using a browser. Figures

4.72 and 4.71 represent the percentage of core C-states and frequency, respectively.

Table 4.14 represents the power metrics collected using Trepn. Based on the results,

we can rank the energy efficient of cloud storage apps as follows: Dropbox App,

Dropbox browser, Google Drive app, and SkyDrive.

Dropbox app versus Dropbox browser: Dropbox using a browser consumed

5 times more average power than the app version, which can be attributed to the

presence of wakelocks in the case of browser. In addition, the app version had lower

percentage of CPU utilization, which led to lower active core percentage and extended

duration in 384 MHz compared to the browser version.

Google Drive app versus Dropbox app: By examining the percentage of CPU

utilization, average virtual memory utilization, and number of threads, we noticed

that the values for the listed metrics are similar to both apps. However, there is

a huge difference in the average power consumption. As a result, we examined the

www.manaraa.com

125

core frequency and noticed that in the case of Google Drive, the CPU remained in

high frequency (1512 and 1026 MHz) for longer duration than Dropbox app. We also

examined the remaining metrics from Trepn, and noticed that Google Drive acquired

a wifilock for 25 seconds. That means for the entire duration (25 seconds), the Wi-Fi

radio remained in high power state. Thus, this explains why with similar metrics

(CPU, memory, and thread), Google Drive still consumed significantly more energy

than Dropbox.

Figure 4.71: Percentage of time spent in each frequency collected on Nexus 7 during
cloud storage scenario using PowerMon.

www.manaraa.com

126

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Google Drive App 701,320 0.28 920 24 18

SkyDrive App 958,906 0.53 893 16 0
Dropbox App 107,202 0.80 908 24 0

Dropbox Browser 561,242 2.33 2090 69 1096

Table 4.14: Power metrics collected on Nexus 7 during cloud storage scenario using
Trepn.

Figure 4.72: Percentage of time spent in each C-State per core collected on Nexus 7
during cloud storage scenario using PowerMon.

Cross-Platform Comparison for Cloud Storage Scenario

In order to compare the energy efficiency of cloud storage apps cross platforms, we

provide Table 4.15. The first observation is that SkyDrive ranked number one most

energy-efficient app on Surface 2 Pro and iPad Air, however, it ranked the least energy

www.manaraa.com

127

Application Surface 2 Pro iPad Air Nexus 7
Google Drive N/A Rank 2 Rank 3

Google Drive (browser) Rank 3 Rank 3 N/A
SkyDrive Rank 1 Rank 1 Rank 4
Dropbox Rank 2 Rank 5 Rank 1

Dropbox (browser) Rank 4 Rank 4 Rank 2

Table 4.15: Cross-platform cloud storage energy efficiency ranking.

efficient on Nexus 7. The second observation is that Dropbox ranked number one on

Nexus 7, however, it ranked the least energy efficient on iPad Air.

4.5.7 Social Networking Scenario

During social networking scenario, we started the profiling tool along with the 3-

minute timer. Next, we launched the social networking app and kept the screen on.

Upon the expiration of the timer, we stopped the collection and saved the results. In

the case of accessing the social networking app via a browser, we first launched the

browser and typed the user name and password. Then, we started the profiling tool

along with the 3-minutes timer. Next, we launched the browser and clicked on sign

in. We kept the screen on until the timer expired. Next, we stopped the collection

and saved the results.

Surface 2 Pro Social Networking Results

We profiled the energy efficiency of the following: Facebook browser, Facebook metro,

LinkedIn browser, and LinkedIn metro. Based on the energy consumption values as

shown in Figure 4.73, we can rank the energy efficiency of social networking apps as

follows: LinkedIn metro, Facebook metro, LinkedIn browser, and Facebook browser.

In order to examine the cause of the differences in energy consumption, we examined

core idle sleep states, package idle sleep states, total hit count and busy duration,

average wake-ups of package and core, and timer resolution as shown in Figures 4.74,

4.75, 4.76, 4.77, 4.78, and 4.79, respectively.

www.manaraa.com

128

Facebook metro versus Facebook browser: We first noticed that metro

version consumed much less platform energy compared to accessing Facebook via a

browser, but it consumed more package and core. After further examination, we

noticed that the browser version was slightly less active than the metro version and

more importantly, the CPU frequency was 26.25% and 66.49% in 2300 and 800 MHz,

respectively in the case of metro, whereas, the frequency was 5.14% and 89.33%

in 2300 and 800 MHz, respectively, in the case of browser. This can explain why

package and core consumed more energy. In order to explain why platform energy

consumption contradicted with package and core, we looked at the timer resolution.

The browser test case changed the timer resolution to 1 ms, whereas the metro app

kept it at 15.6 ms. This change can be directly observed in the average number

of wake-ups for both test cases where the browser case had a much larger average

wake-ups per second compared to metro. Another direct result from changing the

timer resolution is the fact that Facebook (browser) had much more frequent updates

from the site as opposed to Facebook (metro). These updates resulted in keeping the

Wi-Fi radio active for longer duration, consuming more energy, thus increasing the

platform energy consumption (even though package and core consumed less energy

when comparing the alternative case of metro.)

Facebook browser versus LinkedIn browser: Facebook browser consumed

more platform energy than LinkedIn browser even though total busy duration and

average wake-up per package and core are greater in the case of LinkedIn compared

to Facebook. We noticed that if we add up the total percentage of active time for

core 0 and core 1 for Facebook and LinkedIn, we get the exact same value. However,

in the case of Facebook, core 0 was active for longer duration than core 1, unlike

LinkedIn, which had approximately the same percentage of active duration for both

cores. As a result, percentage of package active duration for LinkedIn was lower than

Facebook, which means that both cores were approximately active at the same time,

thus they allowed the package to go to sleep faster, resulting in energy savings.

www.manaraa.com

129

Figure 4.73: Energy consumed by Surface 2 Pro during social networking scenario.

Figure 4.74: Idle sleep states percentage per core collected on Surface 2 Pro during
social networking scenario.

www.manaraa.com

130

Figure 4.75: Package idle sleep States percentage collected on Surface 2 Pro during
social networking scenario.

Figure 4.76: Core frequency distribution collected on Surface 2 Pro during social
networking scenario.

www.manaraa.com

131

Figure 4.77: Total hit count and busy duration in milliseconds collected on Surface
2 Pro during social networking scenario.

Figure 4.78: Average package and core wake-ups per seconds collected on Surface 2
Pro during social networking scenario.

Figure 4.79: Percentage of time spent in each timer resolution.

www.manaraa.com

132

iPad Air Social Networking Results

We profiled the energy efficiency of the following social networking apps: LinkedIn

browser, LinkedIn app, Facebook browser, and Facebook app. Figure 4.80 displays the

variation of energy consumption levels during the entire test duration. The average

energy level is: 1.82, 3.96, 4.21, and 5.1 for LinkedIn browser, LinkedIn app, Facebook

app, and Facebook browser, respectively. As a result, we can rank the energy efficiency

of social networking apps as follows: LinkedIn browser, LinkedIn app, Facebook app,

and Facebook browser. In order to examine the differences in energy consumption,

we examined the total CPU activity percentages and graphics activity percentages

as shown in Figures 4.81 and 4.82. The average CPU activities are 5.66%, 4.40%,

5.51%, and 8.08% for LinkedIn browser, LinkedIn app, Facebook app, and Facebook

browser, respectively. In addition, the average graphics activities are 2.88%, 2.57%,

4.17%, and 5.01%, respectively, for the same order of applications as the average CPU

activities.

LinkedIn browser versus LinkedIn app: LinkedIn browser was more energy

efficient than the app version despite the fact that both average CPU utilization and

average graphics utilization were greater in the case of browser compared to the app

version. As a result, we examined the network activities for both cases. The main

differences with network activities is that the browser version received 60 bytes at

3-seconds interval during a large portion of the test (in addition to the large packet

sizes at the beginning of the test and at around 40 seconds intervals); on the other

hand, the app version received 60 bytes at alternating 2-seconds intervals and 1-

second intervals (in addition to the large packet sizes at the beginning of the test

and at around 40 seconds intervals). That means using the browser, the Wi-Fi radio

was enabled to enter deep sleep states for longer duration than the app version, thus

making the LinkedIn browser version more energy efficient than the app version.

www.manaraa.com

133

Figure 4.80: Energy level collected on iPad Air 2 during social networking scenario
using Instrument.

Figure 4.81: Total CPU activity percentage collected on iPad Air 2 during social
networking scenario using Instrument.

Figure 4.82: Graphics activity percentage collected on iPad Air 2 during social net-
working scenario using Instrument.

www.manaraa.com

134

Nexus 7 Social Networking Results

We profiled the energy efficiency of the following cases: Facebook app, Facebook

accessed through a browser, LinkedIn app, and LinkedIn accessed through a browser.

Table 4.16 represents the power metrics collected using Trepn and Figures 4.84 and

4.83 represent the percentage of C-States and frequency. Based on the results, we

can classify the energy efficiency for social networking apps: LinkedIn app, LinkedIn

browser, Facebook browser, and Facebook app.

LinkedIn app versus all: LinkedIn app was the most energy efficient social

networking app due to the fact that it had the least amount CPU usage percentage

which resulted in the lowest active core c-state and the lowest frequency compared to

all other apps and browsers versions.

LinkedIn browser versus LinkedIn app: We noticed similar observation to

previous scenarios in terms of average virtual memory utilization when comparing

browsers and app versions of an application, with the exception that even CPU per-

centage utilization of the browser version was greater than the app version. This fact

also lead to higher percentage of active C-states and frequency. Thus, the explana-

tion of why LinkedIn app version consumed less average power compared to LinkedIn

browser.

Facebook App versus Facebook browser: Unlike previous observations where

the app version consumes less average power than the browser version, Facebook app

consumed approximately 25.52% more power than the browser version. We noticed

similar observation to previous scenarios in terms of percentage of CPU utilization

where the app version had higher CPU utilization than browser; however, in this

case, the average virtual memory utilization of Facebook app was also relatively high

and close to the browser version. In addition, Facebook app had a sophisticated user

interface. As a result, we checked the GPU load percentage and noticed that the app

version utilized the GPU right after launching the app, 17% more than the browser

version did upon signing in.

www.manaraa.com

135

Figure 4.83: Percentage of time spent in each frequency collected on Nexus 7 during
social networking scenario using PowerMon.

Figure 4.84: Percentage of time spent in each C-State per core collected on Nexus 7
during social networking scenario using PowerMon.

www.manaraa.com

136

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
Facebook App 1,211,526 1.74 1817.81 49 4

Facebook Browser 965,208 1.35 2089.94 72 1023
LinkedIn App 426,946 0.04 946.38 31 0

LinkedIn Browser 640,353 0.55 2131.36 70 1024

Table 4.16: Power metrics collected on Nexus 7 during social networking scenario
using Trepn.

Application Surface Pro 2 iPad Air Nexus 7
LinkedIn Rank 1 Rank 2 Rank 1

LinkedIn (browser) Rank 3 Rank 1 Rank 2
Facebook Rank 2 Rank 3 Rank 4

Facebook (browser) Rank 4 Rank 4 Rank 3

Table 4.17: Cross-platform social networking energy efficiency ranking.

Cross-Platform Comparison for Social Networking Scenario

In order to compare the energy efficiency of social networking apps cross platforms,

we provide Table 4.17. In general, LinkedIn was more energy efficient on all platforms

compared to Facebook. In addition, both LinkedIn and Facebook had the app version

less energy efficient than the browser version on one of the platforms.

4.5.8 E-mail Scenario

During the e-mail scenario, we started the profiling tool along with the 3-minutes

timer. Next, we launched the e-mail app and kept the screen on. Upon the expiration

of the timer, we stopped the collection and saved the results. In the case of accessing

the e-mail via a browser, we first launched the browser and typed the user name and

password. Then, we started the profiling tool along with the 3-minutes timer. Next,

we launched the browser and clicked on sign in. We kept the screen on until the timer

expired. Next, we stopped the collection and saved the results.

www.manaraa.com

137

Surface 2 Pro E-mail Results

We profiled the energy efficiency of the following: Windows Mail metro, GMail metro,

and GMail browser. Based on the energy consumption values as shown in Figure 4.85,

we can rank the energy efficiency as follows: Windows Mail metro, GMail metro, and

GMail browser. In order to examine the cause of the difference in energy consumption,

we examined core idle sleep states, package idle sleep states, total hit count and active

duration, and average wake-ups per second for package and cores as shown in Figures

4.86, 4.87, 4.88, 4.89, and 4.90, respectively.

Windows Mail versus GMail: We noticed that Windows Mail had the least

active percentages of core and package idle sleep states but it remained relatively in

high frequency compared to the other two version of GMail. This shows that the

processor increased the frequency resulted in faster processing, and thus less active

duration of the cores, leading to less energy consumption of the platform. Not to

forget that also Windows Mail had less average wakeups per second for both package

and cores compared to GMail.

GMail browser versus GMail metro: GMail metro version was more energy

efficient than the browser even though it had a higher active core percentage. How-

ever, it had a lower active percentage of package. That means that both cores, in the

case of the metro version, were active concurrently, which enabled the package to go

to the deepest idle sleep state for a longer percentage of time.

Figure 4.85: Energy consumed by Surface 2 Pro during e-mail scenario.

www.manaraa.com

138

Figure 4.86: Idle sleep states percentage per core collected on Surface 2 Pro during
e-mail scenario.

Figure 4.87: Package idle sleep states percentage collected on Surface 2 Pro during
e-mail scenario.

www.manaraa.com

139

Figure 4.88: Core frequency distribution collected on Surface 2 Pro during e-mail
scenario.

Figure 4.89: Total hit count and busy duration in milliseconds collected on Surface
2 Pro during e-mail scenario.

Figure 4.90: Average package and core wake-ups per seconds collected on Surface 2
Pro during e-mail scenario.

www.manaraa.com

140

iPad Air E-mail Results

We profiled the energy efficiency of the following e-mail clients: Apple Mail, GMail

App, and GMail accessed using a browser. Figure 4.91 displays the variation of energy

consumption during the entire test duration. The average energy level is: 8.35, 8.42,

and 8.59 and the average total CPU utilization is: 3.49%, 5.33%, and 5.46% for

Apple Mail, GMail App, and GMail browser respectively. Based on the results, we

rank the energy efficiency as follows: Apple Mail, GMail App, and GMail browser.

These results are consistent with our observation that utilizing the app version of an

application is more energy efficient than accessing it using a browser.

Figure 4.91: Energy level collected on iPad Air 2 during e-mail scenario using In-
strument.

Nexus 7 E-mail Results

We profiled the energy efficiency of the following e-mail apps: GMail App, GMail

accessed using a browser, and Outlook. Figure 4.92 represents the percentage of

CPU utilization over time and Table 4.18 represents the power metrics collected

using Trepn. Based on the results, we can rank the energy efficiency of e-mail clients

as follows: GMail App, Outlook, and GMail using a browser. Users can actually

decrease the energy consumption of the device by 565.91% if they access their e-

mail using the GMail app as opposed to accessing GMail through a browser. By

www.manaraa.com

141

examining the core frequency and idle sleep states as shown in Figures 4.93 and 4.94,

it is evident that the CPU utilization is directly impacting the percentage spent in

high frequency which directly affects the total power consumed by the processor.

For example during GMail browser case, the CPU was utilized for an average of

8.28% causing the CPU to remain for 31.94% and 54.35% in 1512 and 1026 MHz,

respectively. On the other hand, during GMail app case, the CPU was utilized for

an average of 1.69 percent causing the CPU to remain for only 12.78% and 3.12%

in 1512 and 1026 MHz, respectively. In addition, the large number of threads and

wakelocks when comparing GMail browser versus GMail app caused two cores to be

active for large percentages when compared to GMail app where only one core was

active for a small portion (12%) and where the remaining three cores were mostly

offline.

Figure 4.92: Percentage of CPU utilization collected on Nexus 7 during e-mail sce-
nario using Trepn.

www.manaraa.com

142

Figure 4.93: Percentage of time spent in each frequency collected on Nexus 7 during
e-mail scenario using PowerMon.

Figure 4.94: Percentage of time spent in each C-State per core collected on Nexus 7
during e-mail scenario using PowerMon.

www.manaraa.com

143

App Average Average Average Number Total
Name Power CPU Virtual of wake-

in uW Percentage Memory Threads locks
GMail App 207,341 1.69 28 941 34

GMail Browser 1,173,367 8.28 69 2069 911
Outlook 957,468 0.02 40 1767 0

Table 4.18: Power metrics collected on Nexus 7 during e-mail scenario using Trepn.

Application Surface 2 Pro iPad Air Nexus 7
Windows Mail Rank 1 N/A N/A

Apple Mail N/A Rank 1 N/A
Outlook N/A N/A Rank 2
GMail Rank 2 Rank 2 Rank 1

GMail (browser) Rank 3 Rank 3 Rank 3

Table 4.19: Cross-platform e-mail clients energy efficiency ranking.

Cross-Platform Comparison for E-Mail Scenario

In order to compare the energy efficiency of e-mail clients cross platforms, we provide

Table 4.19. On all the platforms, e-mail client provided by the OS device company

was the most energy efficient. That measn Microsoft’s Windows Mail was the most

energy efficient on Microsoft’s Surface. Likewise, Apple Mail was the most energy

efficient on Apple’s iPad Air. In addition, for all platforms, accessing GMail via a

browser was the least energy-efficient mean sof accessing e-mail.

4.6 Implications

Based on our results, we deduced the following list of implications:

• Having multiple tabs of a single browser open at the same time can have a great

impact on the energy consumption of a mobile device. As a result, users should

limit the number of open tabs whenever possible in order to increase the battery

life of their devices.

• Streaming a video using a native app is more energy efficient than streaming a

www.manaraa.com

144

video using a browser.

• Based on the results collected on Android, apps running within a browser have

lower CPU utilization compared to native apps; however, they have more virtual

memory utilization, resulting in higher energy consumption than native apps.

• All Apple apps are more energy efficient than all third-party apps belonging

to the same app category. Since the energy profiling tool supplied by Apple

contained the least precise information compared to other profiling tools, we

recommend that Apple should improve their tool in order to provide developers

with more variety of metrics to be profiled and with higher precision.

• By comparing applications with the same functionality and running on the same

platform, we found that they can vary vastly in terms of energy consumption

(more than 50% in some instances). Therefore, due to the lack of point of

reference, app developers cannot determine the range of energy efficiency value

that they need to target. As a result, there is a need for energy benchmark apps

for each category of apps in order for developers to use them as a baseline to

compare it with the energy consumption of their apps instead of using device

idle energy consumption as the baseline.

• Despite the fact that buffering data can enable Wi-Fi radio to go to deep idle

sleep states, it can also increase the power consumption of memory. Since large

buffer data are stored in memory and cache, which consume high power, the

data size of the buffer needs to be carefully examined because developers need to

balance between the energy savings from enabling the Wi-Fi radio to go to idle

sleep states and the extra energy consumption due to the increase in memory

usage.

• Debugging the energy efficiency is a complicated process where one specific en-

ergy metric value in a specific context can mean something completely different

www.manaraa.com

145

in a different context. For example, apps with high wake-up average per sec-

ond are considered energy inefficient. However, if the processor is active for a

large percentage of time and the average number of wake-ups is low, it does not

mean that the app is energy efficient. As a result, developers should not focus

on one or two energy profiling metrics to profile the efficiency of their apps (e.g,

CPU or memory usage). Adequate profiling requires correlation of an extensive

set of power metrics and interpreting the data collected in the context of the

collection.

• Changing timer resolution on Windows OS and holding wakelocks on Android

OS are common practices. They are due to either lack of awareness of the

overhead of those energy-inefficient practices on the energy consumption of plat-

forms or developers are making a conscious decision to sacrifice energy efficiency

in order to increase performance. Therefore, there needs to be more awareness

among developers on the impact of these two metrics on the overall energy ef-

ficiency of their apps. Energy efficiency of apps should not be an afterthought

but should incorporated in the overall design of the app.

4.7 Related Work

There are several comparative studies for mobile devices. For instance, Gronli et al.

[48] provided a comparative study where they compared three mobile development

environments which are Android, Windows mobile, and Java ME. Qian et al. [100]

provided comparison and analysis of the three programming models of Android which

are Java SDK, C++ NDK, and RenderScript, in order to determine the hands-on pro-

gramming convenience, runtime behavior, and technical correlation of the different

programming models. Moreover, Mullally et al. [76] compared performance of en-

terprise applications on mobile operating systems. They compared two main web

services protocols, SOAP and REST on Android and Windows phones. They found

www.manaraa.com

146

advantages and disadvantages based on the metric evaluated.

In order to determine the impact of web apps, Thiagarajan et al. [95] focused

on energy profiling of web browsing. They provided a tool which can measure the

energy needed to render individual web elements such as cascade style sheets (CSS)

and JavaScript. They profiled the energy consumption of rendering financial sites,

e-commerce, e-mail, and blogging. Then, they made recommendations on how to

increase the energy efficiency of web pages. Finally, Gronli et al. [49] presented the

challenges of testing mobile applications such as on Android and iOS.

Most of the comparative literature focuses on performance because it is impos-

sible to compare, apples to apples, the energy efficiency of an app across platforms.

However, since we did not use in our comparison the absolute value of energy, but

we used the power consumption behavior, therefore we were enabled to compare the

energy efficiency of applications across platforms without violating the comparison

rule of similarity.

4.8 Conclusion

In this chapter, we first provided an overview of the top 3 mobile device operating

systems (Windows 8, iOS, and Android) followed by a list of top 10 energy-efficient

programming rules that developers should consider when developing their apps. Then,

we provided a quantitative analysis of eight common app usage scenarios where we

compared the energy efficiency of apps of the same scenario on the same platform,

followed by cross-platform analysis of the energy-efficiency ranking of app for each

scenario. Then, we performed cross-scenarios’ energy-efficiency comparison. Based

on our case studies, we were able to derive a list of observations and their implications.

These implications may be used by developers in order to increase the energy efficiency

of their apps.

www.manaraa.com

147

CHAPTER 5: WHAT IS

EATING UP BATTERY LIFE ON

MY SMARTPHONE? A CASE

STUDY

5.1 Introduction

Smartphones, owned by over 45.5 million people in the United States, are the fastest

growing segment of mobile devices [80]. It is forecast that by 2015, smartphone

users will increase worldwide to over 1.5 billion, smartphone sales volume will reach

448.8 million, and notebook PCs (Microsoft and Mac) will reach 260 million [24].

Smartphones’ increasing popularity stems from their capability to run numerous types

of applications, from simple ones, such as playing music, to sophisticated ones, such

as group gaming. Despite the faster CPUs and networks, and larger memory, these

phones’ utility remains limited by their battery life. As a result, the energy efficiency

of smartphones is a forefront area of study in the mobile field.

In this chapter, we refer to a smartphone’s “idle time” as the case when the screen

is off, but applications may be running in the background, even if the smartphone

user is not actively using these applications. This idle case is common to many users,

who in some cases are warned by smartphone providers about the impact of idle

applications. However, users lack understanding of the exact impact and how to

reduce it in the event of needing those background applications.

www.manaraa.com

148

5.1.1 Motivation

Our motivation stems from two facts. The first fact is that several works study the

impact of active applications on the battery life during runtime mode, but little atten-

tion has been paid to idle time. Energy consumed is a function of the average power

consumed over time multiplied by time; therefore, because smartphones remain in this

mode for extended periods, such a study is necessary in order to increase the battery

life of smartphones without necessarily limiting their key feature of multitasking. The

second fact is that smartphones are required to be connected to a network such as

3G or Wi-Fi at all times. Therefore, determining the impact of network connection

type is important in order to increase the overall energy efficiency of the smartphone.

5.1.2 Contribution

In this chapter, we make the following contributions:

• We provide detailed case studies of two popular smartphone platforms: an

iPhone and an Android. We observed the impact of background applications

and network connection type on the devices’ CPU utilization and energy con-

sumption. These case studies are particularly important for the following rea-

sons:

1. Current research literature on power profiling of smartphones focuses on

Android because of its open-source nature, while ignoring the number-one

competitor, the iPhone. Our detailed iPhone study reduces the research

gap.

2. We provide possible optimization techniques to increase the energy effi-

ciency of smartphones despite the presence of background activities.

3. We show that even though some concepts are widely known to increase

smartphones’ energy efficiency (for example, replacing polling functions

www.manaraa.com

149

with event-driven functions, or using coalescent network activities, espe-

cially for not-actively-used systems), the two most popular platforms still

have not adopted all these techniques. Therefore, there is still potential

for improvement.

4. We aim to increase users’ awareness of what is consuming the smartphone’s

battery life and help them reduce it using the information presented in this

chapter.

5.1.3 Organization

The remainder of this chapter is organized as follows. In Section 5.2, we provide

models. Then, in Sections 5.3 and 5.4, we provide two case studies using an iOS

(iPhone) and Android (Samsung S3), respectively, where we examine the impact of

background applications and network connection type on the overall energy-efficiency

of the devices. Based on our results, we present in Section 5.5 optimization techniques

to increase the energy efficiency of smartphones during idle duration. Finally, we

conclude in Section 5.6.

5.2 Smartphone Usage Models

A smartphone’s full potential can only be achieved by its ability to connect to the

Internet. The common connection models are through 3G cellular data networks and

Wi-Fi, in addition to the recent penetration of 4G LTE link which is currently not

supported in all areas. The smartphone’s usability is diverse and highly dependent on

user’s demographics. Recent studies by Qian et.al, [82] and Falaki et.al, [45] revealed

that the number of applications used varies from 10 to 90 per user and the number

of interactions per day varies from 10 to 200.

Smartphone’s usage models are broadly characterized as follows:

www.manaraa.com

150

• Streaming media: This category of applications provides a means to watch,

upload, and download videos or music, such as YouTube, Netflix, and Pandora.

• Social computing: It refers to applications whose primary role is social inter-

action, such as blogging, social networking, instant messaging, and e-mailing.

• Informational: It refers to applications used to retrieve information, such as

news feeds or search engines.

• Utility computing: It refers to applications used to perform a computational

task or provide a service, such as calculators, calendars, or reminders.

• Gaming: It can either refer to local games on the devices or network games

where multiple players can play together over the network.

5.3 The Impact of Background Applications and

Network Connection Type on iOS Smartphones

(iPhone)

This section discusses our iPhone case study, particularly the experimental setup and

results.

5.3.1 Experimental Setup and Methodology

During our experiments, we used an iPhone 4S running iOS 5.1.1. We collected our

data using Apple’s Instrument, which allows dynamic profiling of different perfor-

mance metrics of the iPhone [1]. We collected the data at 1-second intervals. We

performed Test 1 through Test 4 as listed in Table 5.1. Depending on the test type,

we started the corresponding applications and let it run in the background. Then, we

started the profiler on the phone. Next, we turned the display off. Upon completion

www.manaraa.com

151

of the test period, we stopped profiling. Lastly, we connected the phone to a computer

via USB, retrieved the data, and analyzed the results.

5.3.2 Experimental Results

We focused in this chapter on the sleep/wake, energy usage, CPU activity, and net-

work activity profilers of the Energy Diagnostics Instrument.

• Sleep/Wake: The sleep/wake status instrument is part of the Energy Diag-

nostics template. It records the devices’ sleep and wake modes. The iPhone has

four major modes—sleep, attempting to sleep, running, and waking—ordered

from the least power-consuming state to the most power-consuming one. Fig-

ures 5.1 and 5.2 represent the results of the sleep/wake modes of Tests 1 through

4 using Wi-Fi and 3G, respectively. States 0, 1, and 2 on the y-axis represent the

sleep, attempting to sleep, and running states, respectively. (Waking requires a

negligible amount of time, so it is omitted from these graphs.)

• Energy Usage: The energy usage instrument does not provide an exact usage

value of power; however, it has a scale from zero to 20, ranging from the most

efficient to the least. Figures 5.3 and 5.4 represent the iPhone’s energy usage

using Wi-Fi and 3G, respectively.

• CPU Activity: Using the CPU activity instrument, we collected the total

percentage of activity over time in addition to each application’s activity sta-

tus change, such as running or suspended. Figures 5.5 and 5.6 represent the

percentage of CPU activity using Wi-Fi and 3G, respectively.

• Network Activity: Using the network activity instrument, we collected the

Wi-Fi bytes in and out, in addition to the cell bytes in and out. Figures 5.7,

5.8, 5.9, and 5.10 represent network bytes in and out using Wi-Fi, using Wi-Fi

excluding test 1 (for graph clarity purposes), using 3G, and using 3G excluding

test 1 (for graph clarity purposes), respectively.

www.manaraa.com

152

Table 5.1: Types of Tests

Test
number

Test name Test description Purpose Applications

Test 1 Background
Streaming
Apps

Mix of applications
with different network
utilization with an
app streaming in the
background

Impact of con-
stantly steaming
data in the back-
ground

Pandora,
Skype,
LinkedIn,
DropBox,
Facebook

Test 2 Network
Apps

Mix of applications
with different network
utilization

Impact of inter-
vallic network
connected appli-
cations

Skype,
Facebook,
LinkedIn,
DropBox

Test 3 Utility Apps Mix of utility and non-
network applications

Comparing im-
pact on energy
consumption of
non-network ap-
plications com-
pared to network
applications

Calculator,
PuzzleGame,
RollerCoast-
erGame,
UnitConverter

Test 4 True Idle
(N/A for
Android)

No applications True idle com-
parison

None

Test 5 Only Moni-
toring Apps
(N/A for
iPhone)

Non-network applica-
tions for Android

Get energy con-
sumption base-
line

SystemLog,
BatteryMon-
itorPro, Sys-
temPanelPro

www.manaraa.com

153

Table 5.2: Types of Tests

Test 1 Test 2 Test 3 Test 4

Average CPU Activity (Wi-Fi) 8.12 1.02 0.38 0.68

Average CPU Activity (3G) 8.86 1.85 0.42 0.35

Average Energy Usage (Wi-Fi) 4.02 1.12 0.36 0.47

Average Energy Usage (3G) 9.85 3.12 0.87 0.86

Table 5.2 summarizes the average CPU activities and the average energy usage

for all tests during both Wi-Fi and 3G.

Results of Test 1: During test 1, we noticed the following:

• In the case of Wi-Fi and 3G, the device remained in a running state throughout

the test, owing to the continuous streaming of music.

• The energy usage alternated between lower usages to high usages. By comparing

the energy usage to the network activities, we noticed that the energy spikes

are consistent with the fetching of new network activities.

• When comparing the network activities of Wi-Fi and 3G, it is evident that the

quantity of packets are fewer, but larger in size, in the case of Wi-Fi when

compared to 3G. This explains why Wi-Fi has a lower number of energy spikes

compared to 3G. On average, we can save 59% more energy when using Wi-Fi

as opposed to 3G.

Results of Test 2:

During test 2, we noticed the following:

• A similar observation as test 1 regarding the alignment of energy usage to the

network activity.

• Unlike test 1, the device alternated between sleep and running states. Also, in

the case of 3G, it remained for longer periods attempting to sleep.

www.manaraa.com

154

• The percentage of CPU usage is lower by 44.86% when comparing Wi-Fi to 3G.

• The average energy usage is lower by 64% when comparing the Wi-Fi to 3G.

Results of Test 3 and Test 4:

During test 3 and test 4, we noticed the following:

• Test 3 and test 4 have similar results, where the device remained in sleep mode

for long periods of time. We noticed that the interval of remaining asleep

increased over time. We concluded that keeping idle non-network applications

does not have a noteworthy effect on the device’s energy efficiency.

• We also observed a counterintuitive fact when we compared test 3 and test 4

while Wi-Fi was enabled. Test 4 (which lacks any background applications) had

higher CPU activities and higher average energy consumption than test 3 (which

has utility applications running in the background). For further investigation,

we connected the USB cable between the iPhone and the computer, then ran

both test scenarios while collecting the CPU activities via the activity monitor

instrument. We noticed the presence of backup function calls, which synchronize

the phone with Apple’s iCloud when no background applications are present and

the phone is in Wi-Fi mode. Apple’s iOS is configured to perform automatic

backup when the iPhone is connected to power, is in Wi-Fi mode, and is not

running any applications. Our original test results of test 4 can be explained

by the following: because the phone was connected to Wi-Fi and it was in

true idle state, the iOS kept performing poll system calls to check if power was

connected in order to perform backup. As a result, CPU activities and energy

consumption were higher in test 4 as compared to test 3.

www.manaraa.com

155

Figure 5.1: Sleep/wake status of iPhone using Wi-Fi.

Figure 5.2: Sleep/wake status of iPhone using 3G.

Figure 5.3: Energy usage of iPhone using Wi-Fi.

www.manaraa.com

156

Figure 5.4: Energy usage of iPhone using 3G.

Figure 5.5: Percentage of CPU activity of iPhone using Wi-Fi.

Figure 5.6: Percentage of CPU activity of iPhone using 3G.

www.manaraa.com

157

Figure 5.7: Network bytes in and out of iPhone using Wi-Fi.

Figure 5.8: Network bytes in and out of iPhone using Wi-Fi excluding background
streaming apps test results.

Figure 5.9: Network bytes in and out of iPhone using 3G.

www.manaraa.com

158

Figure 5.10: Network bytes in and out of iPhone using 3G, excluding background
streaming apps test results.

5.4 The Impact of Background Applications and

Network Connection Type on Android Smart-

phones (Samsung S3)

This section discuss our Android case study, particularly the experimental setup and

results.

5.4.1 Experimental Setup and Methodology

During our experiments, we used Samsung S3, model number GT-I9300, a rooted

Android version 4.0.4, kernel version 3.0.15. We used three applications to collect our

data. The first application is Network Log, which collects real-time network activity

for each application, including the detailed number of bytes sent by applications and

the appropriate timestamp [2]. The second application is Battery Monitor Widget

Pro, which records the utilization in mA, the voltage of the battery in mA, and the

batterys temperature [3]. The third application is SystemPanel App/Task Manager

Pro, which records the system usage, such as CPU usage for each application and

overall CPU usage, in addition to other information not used in this paper [4]. We

performed tests 1, 2, and 5 as described in Table 5.1.

www.manaraa.com

159

5.4.2 Experimental Results

Using Network Log, we collected the device’s network activity. Figures 5.12, 5.13,

and 5.14 represent the sum of network bytes in and out of each individual application

running on Android while using Wi-Fi for tests 1, 2, and 5, respectively. Similarly,

Figure 5.15, 5.16, and 5.17 represent network bytes while using 3G for tests 1, 2, and

5, respectively.

• Network Usage:

It is evident again that Pandora in test 1 dominated the network usage. More

network bytes were sent or received periodically during 3G as compared with

Wi-Fi. Moreover, Skype and Viber periodically sent or received packets. Note

that during test 5, Viber was manually terminated from the task manager and

was not supposed to run in the background; however, despite its termination,

it remained active. Only the uninstall can prevent its activity.

During our experiments, we uninstalled Viber from the iPhone and reinstalled it.

Upon restart, we received the message, as shown in the Figure 5.11, that Viber

will not drain your battery. However, based on our experiments on the Android,

we noticed that even when the application is not running in the background, it

still periodically sends and receives packets over the network, which can change

the radio state from sleeping to running and thus utilize the battery.

Figure 5.11: Viber message notification.

www.manaraa.com

160

• CPU Utilization:

Figures 5.18 and 5.19 represent the percentage of CPU utilization that we col-

lected from SystemPanel App. The results are similar to the results of the tests

on iPhone when comparing the values from Wi-Fi and 3G.

• Energy Usage:

Lastly, we collected the battery consumption from the Battery Monitor Widget.

We noticed that, on average, there is a 9% to 14% energy savings when compar-

ing the energy consumption of all the Wi-Fi tests to the 3G tests. There is also

39% to 47% energy savings when comparing the energy consumption between

test 5 and test 1.

Figure 5.12: Network bytes in and out of Android using Wi-Fi during test 1.

5.5 Optimization Techniques

Based on our observation, we derived a list of optimization techniques to increase the

overall energy efficiency:

1. Coalesce of network activities: Every time there is a new network connection,

the radio transitions to a full power state and stays in that power state after the

transmission is complete [79]. Therefore, it is important to group the network

www.manaraa.com

161

Figure 5.13: Network bytes in and out of Android using Wi-Fi during test 2.

Figure 5.14: Network bytes in and out of Android using Wi-Fi during test 5.

Figure 5.15: Network bytes in and out of Android using 3G during test 1.

www.manaraa.com

162

Figure 5.16: Network bytes in and out of Android using 3G during test 2.

Figure 5.17: Network bytes in and out of Android using 3G during test 5.

Figure 5.18: Percentage of CPU usage of Android using Wi-Fi.

www.manaraa.com

163

Figure 5.19: Percentage of CPU usage of Android using 3G.

activities as close together as possible, even if they remain in consecutive order,

in order to attain longer inactive periods. In particular, we suggest that the

network activities performed by the Kernel and Google Service Framework can

be coalesced together, because these are system-level activities and should be

timed by the OS.

2. Improve the policy of scheduled backup: Backup is a necessary feature given the

importance of the information stored on a smartphone. It is a good strategy

to perform automatic backups when the following three conditions are met:

the phone is in true idle, connected to a Wi-Fi network, and connected to an

external power source. However, unlike the current implementation—where the

iOS keeps polling to check if the external power source is connected when the

phone is connected to Wi-Fi and is in true idle—automatic backup function

should be event driven. In other words, if the phone is connected to external

power, then the function checks if the other conditions are present to perform

automatic backup.

3. Keep the NIC and radio in low-power states: Performance during idle state does

not require the same performance requirements as the performance when a user

is actively utilizing the smartphone. As a result, a smartphone’s efficiency can

be further increased by reducing the power states of the NIC and radio during

network activity if the I/O is off. Keeping the NIC and radio in low-power

www.manaraa.com

164

states are not new concepts. However, the current focus is reduction during

active mode, but exploring new potential for idle mode is necessary because the

requirements during the latter are different from the requirements during active

mode.

4. Informed freedom: There are settings in smartphones such as the Android to

limit the number of background applications running. However, based on our

experiments, not all applications are created equal. For instance, utility appli-

cations do not reduce a smartphone’s efficiency. Therefore, instead of putting

a cap on the number of applications running by automatically forcing them to

end, there should be awareness of which applications and network types can

reduce the smartphone’s efficiency, and which ones do not. Thus, the user can

act accordingly.

5. Context Awareness Programming: We demonstrated in this section that when

a network application type is running, when Wi-Fi is enabled, it consumes less

energy than when it is running on 3G. As a result, software developers should

take advantage of this information to create context-aware software that will

check the network connection type to determine the tasks the application should

perform or, in some cases, ignore until better conditions are present.

5.6 Conclusion

This chapter evaluates the impact of the background application on a smartphone’s

battery life. We showed on two different platforms, both iPhone and Android, that

using Wi-Fi as opposed to 3G will decrease the smartphone’s energy consumption

and thus make it more energy efficient. We also showed how the network activities

(packet size and interval between packets sent and received) directly affect energy

consumption and ultimately battery life. Finally, we aim for our findings to be used

by smartphone users to extend the battery life of their devices, and for our recommen-

www.manaraa.com

165

dations for coalescing network activities, improving the policy of scheduled backup,

and keeping the NIC and radio in low-power states be adopted by the platform and/or

OS providers.

www.manaraa.com

166

CHAPTER 6:

BATTERYEXTENDER: AN

ADAPTIVE USER-GUIDED

TOOL FOR POWER

MANAGEMENT OF MOBILE

DEVICES

6.1 Introduction

The battery life of mobile devices is one of their most important resources. However,

due to battery size constraints, the amount of energy stored in these devices is limited.

As a result, increasing the energy efficiency of these devices is extremely important.

Many factors can impact battery life. Resource utilization by applications running

on the platform and the number of powered-on device components the platform has

greatly impact battery life. As a result, the platform’s power management layer of

the device can change the processor frequency or suspend the hard disk in response to

utilization. In addition, it can change the device components’ power states to an idle

sleep state in an attempt to reduce the power consumption of the device components.

There is much research on power profiling of device components or energy profiling

of applications in order to enable application developers to debug their applications

from an energy-efficiency perspective. However, there is a lack of focus on the end

user. What about the user? What if a user needs the platform to last for a specific

www.manaraa.com

167

duration until a particular task is performed, but the battery life is not enough? Can

we guide users by giving them options to reach their goal? Will users be willing to

completely sacrifice some options in order to achieve their goals? By considering the

mobile device as a provider of a collection of resources–similar to a cloud resource

provider, which enables users to reconfigure the platform in order to include only the

needed resources in order to achieve their goals and completely shut off everything

else–then, yes, extending the overall battery life of a mobile device in order to complete

a specific task will be possible.

As a result, we developed BatteryExtender, a user-guided tool for power manage-

ment of mobile devices. The tool’s goal is to be strictly software based and to enable

users to reconfigure their devices according to the resources needed to accomplish

a specific task. BatteryExtender can predict the impact of applications and device

components on a platform’s overall battery life through minimal energy profiling thus

minimizing the power consumption overhead of the tool.

Using BatteryExtender, we were able to reduce the energy consumption of the

platform between 10.03 and 20.21 percent, and in rare circumstances, we were able

to reduce the energy consumption by up to 72.83 percent. The accuracy rate ranged

between 92.37 and 99.72 percent.

6.1.1 Organization

To this extent, we discuss related work in Section 6.2, followed by our motivation in

Section 6.3. We present the BatteryExtender design and implementation in Sections

6.4 and 6.5, respectively. We evaluate BatteryExtender in Section 6.6. Finally, we

conclude in Section 6.7.

www.manaraa.com

168

6.2 Related Work

Increasing the battery life of mobile devices has been heavily investigated by re-

searchers. In order to reach this goal, researchers have taken different approaches.

We broadly characterize these approaches into the following five categories:

1. Providing power-profiling models of hardware components of mobile devices.

2. Providing estimates of energy consumption of applications, thus enabling ap-

plication developers to develop energy-efficient applications.

3. Providing APIs for developers to either increase their applications energy effi-

ciency or power profile it.

4. Providing users with power-profiling tools that highlight the impact of running

applications on the platform.

5. Using surveys of current power models and/or experiments in order to derive a

list of implications and/or recommendations.

Using the first category of research, which provides power-profiling models of mo-

bile devices’ hardware components, researchers adopted two techniques: one using

external power-measurement tools to accurately measure the power consumption of

mobile device components, and one which relied solely on software-based measure-

ment.

Using external power-measurement tools, Carroll and Heiser [32] analyzed the

power consumption of smartphone components using a Data Acquisition system

(DAQ) with an instrumented platform. They ran various benchmarks in order to

accurately measure the power consumption of major components of a smartphone.

Based on their analysis, the display, GSM module, graphics accelerator/driver, and

backlight were the most power-consuming components. Dong et al. [39] also relied

on external measurement tools in order to power profile the graphical user interface

www.manaraa.com

169

on OLED displays at the pixel, image, and code levels. They achieved accuracy of

99, 90, and 95 percent, respectively. They built their energy models by measuring

the power consumption of the display by collecting the current drawn from a USB

interface of a DAQ.

By only relying on software-based techniques for power profiling of device com-

ponents, Maker et al. [68] provided a technique to improve online power modeling in

smartphones. They conducted case studies where they profiled power consumption of

different smartphone components such as Wi-Fi, GPS, and cellular radio by changing

the battery management unit (BMU) sampling rate. As a result, they increased the

accuracy of power consumption estimation of those devices. Similarly, Jung et al.

introduced DevScope [59], an online power-analysis tool for smartphone hardware

components, which can accurately build the power models despite the high-interval

update rate of the BMU. Sesame [40] is another accurate energy modeling tool that

uses a smart battery interface to build accurate power models with low-interval es-

timation of power consumption. In addition, many software energy-profiling tools

utilized Nokia Energy Profiler to build their models. For instance, Perrucci et al.

[81] conducted a large set of experiments on a Nokia device running Symbian OS

9.2. Their experiments aimed to measure the exact power consumption of all smart-

phone components while accounting for their different power states. They used Nokia

Energy Profiler and verified their results by a multimeter. They determined no signif-

icant difference between the reported power consumption values from both. Likewise,

Balasubramanian et al. [28] used Nokia Energy Profiler to profile network activities of

available network technologies. They developed a model for the energy consumption

of network devices, which can account for devices’ tail power. As a result, they were

able to present a method that can reduce the tail power based on the RRC protocol.

Using the second category of research, which provides estimates of energy con-

sumption of applications, a significant number of tools were developed enabling soft-

ware developers to debug the energy efficiency of their applications. First of all, each

www.manaraa.com

170

operating system provider supplies its developers with tools to power profile their

apps, in an effort to highlight the importance of power consumption of apps and en-

able developers to optimize their apps in terms of power consumption. For instance,

Apple provides its iOS and OS X app developers with Instruments [14], a power-

profiling tool that enables developers to profile the apps’ utilization of resources, such

as CPU, Wi-Fi, memory, and energy. Likewise, Microsoft provides an energy con-

sumption tool within the Visual Studio 2013 environment [92], where developers can

get power estimation of their apps while prioritizing information on the basis of the

metrics under their control. The tool does not require any specialized hardware; how-

ever, it doesn’t offer accurate power characterization of the device. WattsOn [74] is

another tool aimed for application developers. It allows them to focus on the energy

efficiency of their code by mimicking the Windows Phone platform and estimating

the app’s energy consumption on the basis of empirically derived power models made

available by either the smartphone manufacturer or mobile OS platform developers.

Likewise, Eprof’s [79] main goal is to capture and account for the power usage of the

program entity by precisely accounting for the entitys effect on components’ power

state and accounting for the power consumed by the component even after the entity

completed its functionality. The tool can be used by application developers in order

to find the source code of energy bugs such as ”wakelock bugs.” In addition, Pathak

et al. [80] provide fine-grained power modeling for smartphones using system call

tracing, which uses two types of models: utilization-based and nonutilization-based

power behavior. This technique did not simply enable them to account for com-

ponents’ power based on their state, but also for the components’ tail power, and

then associate the values with the application responsible for the power consumption.

Other tools are aimed at an even-lower level, focusing on enabling architects and

developers of compilers such as Wattch [31]. Wattch is a framework that can analyze

and optimize microprocessor power dissipation at the architecture level.

www.manaraa.com

171

The third category of research, which provides APIs for developers, resulted in

the following frameworks. Senergy was developed by Kansal et al. [61]. It includes

an API that can be used by developers of context-aware applications in order to

enter latency, accuracy, and battery (LAB) requirements independent of sensors and

inference algorithms. Then, Senergy attempts to meet developers’ LAB requirements

by adapting as the hardware changes. Another framework example is SystemSens [44],

developed with the goal of monitoring usage of smartphones’ research deployment.

It has a client-server model where the apps on smartphones (clients) send periodical

information to the server. A subset of the events sent are related to battery usage,

screen status (on or off), service logs, and network traffic statistics such as Wi-Fi signal

strength, just to name a few. Application developers can use the AIDL interface to

be treated as a virtual sensor of the framework and thus collect context and power

utilization data related to the application. This information can be collected and

monitored by the application developers in order to increase the energy efficiency of

their applications.

The forth category of tools is aimed at users in order to highlight the impact of

running applications on their platform. Most of the tools in this category rely on

collective information to build the energy consumption models. For instance, Carat

[78] is a tool that sends coarse-grained statistics to servers residing in the cloud. The

statistics sent include battery usage, running apps, the device model, and the oper-

ating system. Based on the data collected from the pool of users, the tool can profile

the application’s impact on battery life and send notifications to users such as the

best configuration properties of their specific platform in order to increase battery

life while running a specific application. Carat also notifies users about power-hungry

apps and apps that contain energy bugs. Likewise, Wang et al. [99] used a collab-

orative approach to estimate the power consumption of mobile applications. They

collected data from 120,000 Android users for about four weeks. The information

collected contained battery traces and application switching events. Then, they used

www.manaraa.com

172

the data to build their power estimation model for mobile applications.

Lastly, an example of research that relied on surveys and experiments was pre-

sented by Shye et al. [89], who characterized user activities in smartphones over a

period of six months by logging all the activities. Then, they deduced a list of implica-

tions for future power-consumption studies for smartphones in addition to providing

recommendations for platform and software developers. Similarly, Vallina-Rodiguez

et al. [97] highlighted the importance of considering the context when evaluating

energy demands and resource availability of handheld devices. By collecting a set of

data related to OS usage, battery statistics, network profile, and usage, in addition

to CPU, screen, and USB, they were able to show that user behavior defines usage

patterns and energy consumption. Abdelmotalib and Wu [26] recommended using

Wi-Fi instead of Bluetooth for transmitting large data size in order to improve the

energy efficiency of mobile devices. They based their recommendation on surveying

studies that focused on power consumption of device components of mobile devices.

Finally, Datta et al. [36] discuss Android power-management techniques, provide

a survey of power-saving apps for Android, and derive their limitations. In addi-

tion, they suggest a future direction in power management specifically focusing on

the client-server model for power profiling and understanding user behavior. They

then provide privacy and security concerns when using that approach. In addition,

they proposed a photovoltonic cell as an external power source provider that can be

integrated into the screen in order to take advantage of the solar power.

Our research differs from the listed related work because we don’t simply power

profile the devices’ components; we also use the information to enable the user to

extend the battery life by reconfiguring their device on the basis of our energy-

consumption prediction of each component, in addition to the resources needed in

order to satisfy the application requirement of resources. We also energy profile an

application on the basis of the platform’s energy counters and utilization counters.

www.manaraa.com

173

6.3 Motivation

Our motivation stems from two facts:

• The first fact is the lack of research/tools that enable users to extend battery

life on demand. A lot of research focuses on either enabling software developers

to increase the energy efficiency of their applications or informing users about

power-hungry applications, as shown in the related work section. In addition, we

didn’t limit our related work research to academic research, but we also surveyed

current commercial applications related to battery life that target users. We

found an extensive amount of apps (free and paid) on Android devices, such

as Battery, Battery Booster, Battery Defender, Battery Dr. Saver, Battery

Extender, Battery Indicator, Battery Info, Battery Mix, Battery Monitor Pro,

Top Battery, Easy Battery, and One Touch Battery. Similarly, we found many

applications for iOS devices, such as Battery Doctor, Battery, Battery Expert,

Battery Go, Battery Life Pro, Battery Magic Elite, Battery Power, Battery

Watch, and Sys Lite. All these apps displayed the current battery level and

either gave an estimate of battery life based on general use, such as ”Audio

Playback” or ”Web Surfing” duration, or displayed CPU and/or memory usage

of apps and enabled users to terminate them. Others showed battery drainage

or device temperature over time. However, none enabled the user to precisely

extend battery life for a specific time. Even though they show battery duration

during the execution of a specific task such as ”Talk Time” or ”Video Playback

time,” however, their recommendations are general and not specific for a given

app. As a result, because apps of the same category (such as video playback) can

each consume vastly different amounts of energy, the apps’ recommendations

can be completely off and not useful in many cases. Finally, to the best of our

knowledge, we did not find a tool that can answer the question ”what can

users do if they need to extend battery life in order to accomplish a

www.manaraa.com

174

specific task?”

• The second fact is based on the lack of power-management techniques in re-

sponse to current and future trends of mobile device evolution. In particular,

mobile devices are becoming sophisticated because of the addition of many sen-

sors and device components enabling them to accomplish a variety of goals

beyond computation and communication. Some of the goals of this collection

of components, sensors, and devices include (but are not limited to) user experi-

ence enhancements, health care improvements, environmental monitoring, and

tailored advertising. For instance, they can be used to simply enhance the user

experience by changing the landscape of the user interface based on the device

orientation or changing the display brightness based on the device’s surrounding

light exposure. Another example is their usability as a means for collaborative

diagnostics, such as the case of Carat [78], which collects information from its

user base to perform energy diagnostics of applications. Another example is

UbiFit Garden [35], which uses mobile sensors to capture physical activities of

its users and associate the information with their physical goals. PEIR [77] is

another project that uses sensors in mobile devices to alert users about their car-

bon footprint. Similarly, MIT VTrack [94] is an example of a project that uses

mobile sensors to estimate commute time by collecting traffic information from

its user base. These examples are only a minuscule subset of techniques used

by researchers and industry to take advantage of mobile sensors. Lane et al.

[66] provide a comprehensive survey of current mobile phone sensing projects

and classify them into the following three categories: individual, group, and

community sensing. Based on this survey, it is clear that this field of research is

gaining traction to become the next hot topic, which can elevate the utilization

of mobile devices from ”enablers of data access” to ”providers of data.”

As a result, we predict that as this field matures, we are going to be introduced

to much larger types of sensors enabling the mobile devices to be even more

www.manaraa.com

175

Figure 6.1: Components of mobile devices.

sophisticated. However, as interesting as this new direction seems, the addition

of these components can result in an extensive power increase in the platform’s

overall power consumption, resulting in shorter battery life.

From these two facts, we can deduce a correlation between the cloud concept and

mobile trends. More specifically, in a cloud environment, users configure on-demand

resources in order to accomplish a specific task. Similarly, if we treat mobile devices

as an abstraction of a collection of resources, as shown in Figure 6.1, then we can

enable users to reconfigure the device on demand in order to accomplish a specific

task. In particular, we consider battery life as a component, and in order to configure

a greater amount of battery life, users will need to sacrifice some resources.

6.4 BatteryExtender Design

The BatteryExtender design is based on satisfying the tool’s objectives.

6.4.1 BatteryExtender Objectives

Based on our motivation, we clearly define BatteryExtender objectives as follows:

www.manaraa.com

176

• Software Only: External power-measurement tools are expensive and incon-

venient for users. In addition, we don’t want to feed the tool predefined device

component power-consumption values in order to maximize the number of plat-

forms it supports. As a result, we strictly decided to develop the tool using

software-only techniques through the utilization of power-consumption metrics

provided by the platform.

• The Tool’s Audience: The tool is not aimed at software developers but

everyday users. As a result, it does not require accurate power profiling of

platform devices and applications. Its main purpose is to simply enable users

to extend the battery life of their mobile devices for a specific duration.

• Accuracy vs. Overhead: Continuous power profiling will undoubtedly pro-

vide accurate estimations. However, it will also pose some extra overhead. Since

the tool is used when the users need to conserve battery life the most, we can

sacrifice accuracy in order to reduce power-consumption overhead.

• On Demand: We want users to be able to reconfigure their device on demand.

• User Interactive: We want the tool to inform users about the impact of

platform devices and applications on battery life and enable them to choose the

best combination of configurations that to their needs.

This list of objectives is the building block of BatteryExtender’s design and im-

plementation.

6.4.2 Design

Based on BatteryExtender’s objectives and our energy overhead analysis, we define

the tool’s architectural design as shown in Figure 6.2. BatteryExtender (BE) consists

of the following five components: a calibration module, a user interactive module

www.manaraa.com

177

consisting of user command selection and user interface, an energy profiling module,

a power management module, and a monitoring module.

The calibration module should be invoked at least once after the installation of

the tool. This module aims to profile the power consumption of platform device

components. It requires about 3 hours of profiling time depending on the number of

platform components. It requires users to refrain from using the platform during this

duration. Upon completion, it produces an XML file with calibration values for all

physical components. Users may periodically repeat the invocation of this module in

order to increase the tool’s accuracy because it is known that a user’s behavior over

time (such as discharge, charge frequency, and full charge behavior, in addition to

the battery wear level) can impact the battery drainage behavior, thus impacting the

calibration values.

Using the user interactive module, users can enter the duration by which they

want to extend battery life. The selection triggers the energy profiling module. The

energy profiling module determines the list of applications running on the platform

and calculates the estimate of their energy consumption over the battery life by de-

termining the application resource utilization and energy consumption portion of the

application based on the processors’ energy consumption. It ranks applications on

the basis of their energy consumption and retains the data for the top 5 most energy-

consuming applications. This module also determines the current platform settings.

It determines each device component state (on or off). Then, it estimates the impact

of changing the component state on the platform’s battery life based on current bat-

tery life duration and using the calibration power estimation data. Upon completion,

the energy profiling module updates the user interface of the interactive module with

the top 5 power-consuming applications and displays the current platform configu-

ration in addition to displaying the amount of battery life saved/gained by changing

the state of each available component.

At this point, the user can check-mark the options to change. Upon option selec-

www.manaraa.com

178

Figure 6.2: BatteryExtender architecture.

tion confirmation, the power management module reconfigures the hardware compo-

nents in order to satisfy the user’s choices and terminate the check-marked applica-

tions.

Upon completion, the monitoring module periodically checks the remaining bat-

tery life. The goal is to ensure that the remaining battery life satisfies the minimum

between battery life extension duration requested by the user and the sum of esti-

mated battery extension duration based on the user’s selection. Since the remaining

life duration is not accurate, the monitoring module allows few unsatisfactory es-

timate readings. However, upon reaching a threshold of unsatisfactory remaining

battery life duration estimates, the user is notified. Then, the user can either energy

profile the platform again in order to reconfigure the platform or accept that the new

expected battery life will be the desired remaining battery life.

Finally, in this section we provided a high-level architectural design that satisfies

the tool’s goals.

6.5 BatteryExtender implementation

BatteryExtender’s architectural design can be implemented to any mobile device op-

erating system (OS). However, our target OS is Microsoft platforms starting with

Windows 8. The main purpose is because Microsoft, starting with Windows 8, is

trying to attract the largest possible market share through appealing to users by pro-

www.manaraa.com

179

viding the same user experience across all its mobile device types, such as laptops and

tablets. That means that users get the full system capabilities of a desktop in addition

to the tablet experience (similar to Android and iOS) through their Metro Style App

model and a full fledged desktop. As a result, a single platform contains an exten-

sive number of components, and our power-management approach can significantly

impact the battery life.

Prior to our implementation, we validated our tool’s approach through an analysis

of current Windows device power-management effectiveness. Then, using experimen-

tal analysis, we determined the appropriate collection granularity of battery life in

order to increase the accuracy of prediction of battery life extension duration.

During our experiments, we used two different Windows platforms. The first plat-

form is a Dell XPS 12 Ultrabook Convertible, as described in Table 6.1. This platform

is a full laptop and can be converted to a tablet as well. In the remainder of this

paper, we will refer to this platform as ”Dell Convertible.” The second platform is

the Microsoft Surface 2 Pro Tablet, as described in Table 6.2. In the remainder of

this paper, we will refer to this platform as ”Surface 2 Pro.”

6.5.1 Windows Device Power-Management Analysis

Starting with Windows 8, Microsoft requires that the device components of their

platform support five different D-States [10].

The first state is D0, which is the active state where the device consumes maximum

power with all its clocks on. The second state is D1, where power consumption and

clock are reduced. It is the highest-powered device sleep state, and a clock-gated

state where the device preserves it hardware context. The third state is D2, an

intermediate device lower-power state. It consumes less power than D1, but most

context is lost by the hardware. The fourth state is D3-Hot, which is a very low sleep

www.manaraa.com

180

Specification Description

Platform Dell XPS 12 Ultrabook Convertible

Processor Intel(R) Core(TM) i7-4650U @ 1.70 GHz 2.30 GHz

Code Name: HASWELL-ULT

Packages 1

Cores per package 2

Logical processors per core 2

Hard Disk 256 GB Solid State

Memory 8.0 GB

Operating System Windows 8 Pro

Display 12.5” Full HD (1080p)

Bluetooth Intel(R) Centrino(R) Wireless Bluetooth(R)

+ High Speed Virtual Adapter

Wi-Fi Intel(R) Dual Band Wireless-AC 7260

NFC NXP NearFieldProximity Provider

Speaker & Microphone Realtek High Definition Audio

Touch 10 Touch Points

Display Refresh Rate 59 and 60 Hz

Camera Front WebCam

Sensors HID Sensor Collection

Simple Device Orientation Sensor

Microsoft VS Location Simulation Sensor

Table 6.1: Dell Ultrabook Convertible specifications.

www.manaraa.com

181

Specification Description

Platform Microsoft Surface 2 Pro

Processor Intel(R) Core(TM) i5-4200U @ 1.60 GHz 2.30 GHz

Code Name: HASWELL-ULT

Packages 1

Cores per package 2

Logical processors per core 2

Hard Disk 64 GB Solid State

Memory 4.0 GB

Operating System Windows 8.1 Pro

Display 10.6” HD

Display Refresh Rate 59 and 60 Hz

Bluetooth Marvell AVASTAR Bluetooth Radio Adapter

Wi-Fi Marvell AVASTAR 350N Wireless

Network Controller

Speaker & Microphone Realtek High Definition Audio

Touch 10 Touch Points

Pen

Camera Microsoft LifeCam Front

Microsoft LifeCam Rear

Sensors HID Sensor Collection

Simple Device Orientation Sensor

Microsoft VS Location Simulation Sensor

Table 6.2: Microsoft Surface 2 Pro Tablet specifications.

www.manaraa.com

182

state that consumes less power than all previous states. When a device is in this state,

it remains connected to the power source with very low current drawn; however, it

can be still detected by the bus. The last state is D3-Cold, the lowest possible sleep

state, where the device only receives a trickle of current; it reduces power and clocks

to the minimum possible value and only keeps enough to appear on the platform bus

and respond to bus commands. After a device enters D3-Cold for a period of time,

it gets turned off.

In order to validate our approach of disabling unnecessary components using Bat-

teryExtender, we performed experiments using Surface 2 Pro in order to observe

the efficiency of current power management of device components. The goal of this

preliminary study is to determine the actual device power sleep states during two

scenarios. The first scenario is the platform default state where all components are

on, and the second scenario is when we disable the following 10 devices: the Wi-Fi

adapter, Bluetooth adapter, HID sensor collection, Visual Studio (VS) location simu-

lation, pen and touchscreen sensors, audio adapter, camera rear and front, and printer

queue. We collected the device D-States using Event Tracing for Windows (ETW)

for 5 minutes while the platform was in idle with the screen on for both scenarios.

We compared the list of devices collected between default settings and reconfigured

settings.

By comparing the list of devices, we noted that greater than 50 devices were

detected using the default scenario compared to the disabled one. Table 6.3 has the

results. The first set of D-States labeled ”Idle” represents the actual extra devices

that appeared in the report when the platform was in default settings compared to

when we disabled 10 devices. The results show that many devices were in the D0

state 100 percent of the time, and just a few were in D0 for 96.9 percent of the time

before they entered D2 for the remaining duration of 3.10 percent. As a result, it is

evident that many unused devices were in active state with high power consumption,

translating into consuming unnecessary battery life.

www.manaraa.com

183

For further observation, we performed another experiment, where we kept the

default settings and ran a local movie for 1 hour, during which time we collected the

device D-States. The results are displayed in Table 6.3 in the video playback section.

Again, we noticed that many devices remained in active state 100 percent of the time

even though the workload did not require it. However, there were some devices that

switched to the D2 state for 99.95 percent of the time. In addition, by comparing

Idle and Video playback scenarios, we noticed that microphone and speakers were the

only devices that were shut off on their own during Idle scenario because they didn’t

appear during Idle device D-State collection. Another noteworthy observation is that

only cameras were in D3-Hot and no devices were in D3-Cold, whereas the majority

of devices were in either D0 or D2.

Finally, this experiment demonstrated that a better power-management mecha-

nism was needed. As a result, BatteryExtender can definitely take advantage of this

inefficiency in order to enable users to strictly use the needed devices and disable all

the rest–thus, increasing the platform’s battery life.

www.manaraa.com

184

Device Idle Video Playback

D0 D1 D2 D3 D3 D0 D1 D2 D3 D3

Hot Cold Hot Cold

Microsoft Bluetooth Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Microsoft Bluetooth LE Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

BthLEEnum 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

MMDEVAPI\AudioEndpoint 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

MMDEVAPI\AudioEndpoint 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

mshidumdf 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

MTConfig 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

SensorsServiceDriver 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

USB Composite Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

WUDFRd 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Compliant Touch Screen 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%

HID Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%

HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID Sensor Collection 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID-compliant consumer control device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%

HID-compliant Pen 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%

HP Laser Jet 200 color M251 PCL6 Class 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Intel HD Graphics Family 4.63% 0% 0% 95.37% 0% 100% 0% 0% 0% 0%

IP Tunnel Device Root 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Lightweight Sensors Root Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Mar. AVA. Bluetooth Radio Adapter 98.98% 0% 1.02% 0% 0% 98.98% 0% 1.02% 0% 0%

Mar. AVA. 350N Wireless Net. Controller 100% 0% 0% 0% 0% 98.98% 0% 1.02% 0% 0%

Microsoft LifeCam Rear 0% 0% 0% 100% N/A 0% 0% 0% 100% N/A

Microsoft LifeCam Front 0% 0% 0% 100% N/A 0% 0% 0% 100% N/A

Microsoft VS Location Simulator Sensor 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Microsoft Wi-Fi Direct Virtual Adapter 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Printer Queue 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Realtek High Definition Audio 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Microphone (Realtek High Definition) N/A N/A N/A N/A N/A 99.99% 0% 0% 0.01% 0.%

Speakers (Realtek High Definition) N/A N/A N/A N/A N/A 99.99% 0% 0% 0.01% 0%

Surface Cover Audio 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Teredo Tunneling Pseudo-Interface 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Table 6.3: Extra device D-States during idle and video playback on Windows Sur-
face 2 Pro compared to the scenario where we disable 10 devices. We
highlight in green the devices that switched from active to low device
power state when comparing idle to video playback and we highlight
in red the devices that should have switched from active to low device
power state when comparing idle to video playback due to the long
inactive duration.

www.manaraa.com

185

6.5.2 Analysis of Collection Granularity of Battery Life

Battery life is a major characteristic to determine users’ experience of mobile devices.

Users want the longest possible battery life. Two variables determine battery life:

the battery’s power supply and the drainage rate. First, the maximum power supply

stored by the battery is directly related to the battery size. The larger the battery,

the greater its power supply. However, mobile device users require a lighter system

as well, resulting in smaller batteries, leading to limited power supply. As a result,

Lithium ion batteries are the batteries of choice for mobile devices because they

can store higher energy values per weight unit compared to other types of batteries.

Each battery may have a varying capacity based on the amount of energy it can

hold. During discharge, the current, which is carried by Lithium ions, moves from

negative to positive electrodes, resulting in voltage changes at varying rates based on

the amount of power drawn. The amount of power drawn depends on the platform’s

available components and load. Needless to say, the fewer powered-on components

and the lighter the load results in longer battery life because of the decreased power

drawn.

The best and most accurate way to determine a platform’s power consumption

is by using hardware metering equipment. However, since our goal is to strictly

use software techniques for our tool, we must translate how the power consumption

(discharge rate) translates to the changes in battery capacity and remaining battery

life.

Windows platforms support several APIs related to batteries such as (but not lim-

ited to) SYSTEM POWER STATE, SYSTEM POWER STATUS, SYSTEM POWER LEVEL,

BATTERY QUERY INFORMATION, win32 battery, CIM Battery, and BATTERY STATES.

We are interested in collecting the following battery metrics:

• Battery capacity reported in milliwatts per hour (mW/h) and denoted as

BCap. It is the amount of energy stored in the battery. The formula to convert

mWh to joules is presented in Equation 6.1.

www.manaraa.com

186

• Rate reported in milliwatts (mW) and denoted as BRate. It is the amount of

power drawn from the battery.

• Battery life remaining, denoted as BLife. It can be calculated as shown in

Equation 6.2.

1000mWh ≡ 3.6joule (6.1)

BLife =
BCap

BRate

(6.2)

BatteryExtender uses two different APIs. The first is GetSystemPowerStatus,

which returns a SYSTEM POWER STATUS structure that contains BatteryLifePer-

cent and BatteryLifeTime, among others. The second API is getting a handler to the

device interface of the battery in order to collect BATTERY QUERY INFORMATION,

which contains all of the battery information, such as capacity, voltage, rate, and even

BatteryLifeTime. We used both APIs for the following reason: the update rate of

BatteryLifeTime of each API is different. The first API is coarse grained, whereas the

second one is very fine. In case of capacity, having a fine reading is acceptable because

the capacity value is a snapshot of how much energy the battery is currently holding.

On the other hand, a fine reading of BatteryLifeTime is unacceptable in our case be-

cause it fluctuates frequently based on the ”this moment” discharge rate and capacity.

For example, 10 consecutive readings of BatteryLifeTime with 1-second intervals can

have an hour difference between some of the readings. As a result, we used GetSys-

temPowerStatus for BatteryLifeTime and BATTERY QUERY INFORMATION for

battery capacity.

Collecting battery metrics at a very low time interval, such as every 1 ms, will give

an accurate timeline of changes in power consumption. However, this method requires

frequent polling of information, which incurs a high overhead. Since we adopted a

coarse-grained reading of BatteryLifeTime, we profiled the battery life behavior in

www.manaraa.com

187

order to determine the accuracy of our approach and the ideal collection frequency.

Profiling the battery life behavior consists of the following steps:

1. We disabled all power-management functionality of the platform power plan in

order to maintain consistent power consumption of the platform.

2. We disabled all network adapters in order to avoid their periodical activities.

3. We fully charged the battery.

4. We disconnected the power cable.

5. We kept the platform in idle mode with the screen on.

6. We let the battery drain while collecting, at a time interval T, the remaining

capacity and battery life remaining in seconds.

Figure 6.3 represents the data collected on a Surface 2 Pro tablet at a 3-second

interval, and Figure 6.4 represents the data collected on a Dell Convertible tablet

and Ultrabook at a 2-minute interval. By comparing the two figures, it becomes

obvious that with a 3-seconds interval, there is higher fluctuation in the remaining

battery life estimation graph compared to 2-minutes interval granularity. As result,

we determined that a medium interval, such as a 3-second interval, resulted in an

unclear picture because the reported values had high variance. On the other hand,

collecting at a relatively high granularity (a 2-minute interval) let us collect the data

with low variance and gave us consistent values, which let us be more accurate.

The other noteworthy observation is that when the remaining battery life reaches

5%, the platform enters hibernation mode. When we disable hibernation, as soon as

the battery level reaches 5%, the capacity drops sharply, and within few minutes the

platform switches off. As a result, the platform requires a significant amount of time

on AC power before it can boot again. Therefore, we highly discourage disabling the

hibernation setting when the battery level reaches 5%.

www.manaraa.com

188

Figure 6.3: Relationship between battery capacity and remaining battery life over
time at a 3-second interval on Surface 2 Pro tablet.

Figure 6.4: Relationship between battery capacity and remaining battery life over
time at a 2-minute interval on Dell convertible.

6.5.3 Implementation

Our implementation is aimed at accomplishing the tool’s objectives and is influenced

by the preliminary studies performed using our target operating system. The follow-

ing subsections describe in detail our technical implementation of each module.

www.manaraa.com

189

Calibration Module

Self-modeling power consumption of a platform is highly dependent on the component

collection it contains. Because these components vary from one platform to another,

and even components from different vendors can vary their power consumption, it

becomes important to build a self-modeling approach in order to estimate the power

consumption of the platform in question. As a result, the calibration module aims

to determine the power consumption of each device component. Once BatteryExten-

der is installed, users are required to run calibration at least once when the battery

capacity is between 95 and 10 percent due to the fact that the discharge curve expe-

riences a sharp drop when full and when it is almost empty, according to Tremblay

et al. [96]. Moreover, users may choose to run the calibration periodically in order

to improve accuracy of BatteryExtender due to the fact that the battery’s resistance

changes over time. The test duration is about 3 hours depending on the number of

platform components. During this period, users are not allowed to use the platform.

Prior to calibrating, we need to change the platform power-management settings.

Most (if not all) platforms support a power-management policy that suspends the

hard disk when not in use and changes the processor frequency on the basis of the

processor’s load. We must disable both in order to keep the platform’s power con-

sumption constant during the calibration phase. In addition, we must be able to

perform the following three commands:

• Determining the platform’s device components: In order to determine

the list of available devices, we use Plug and Play (PnP) configuration man-

ager functions. We get a handler to device node DevNode and we iterate

through them, looking for the list of devices. We can enable devices using the

CM Enable DevNode function and disable them using CM Disable DevNode.

• Determining the display brightness: In order to get display brightness, we

can create a handler to the LCD device, and then, using DeviceIoControl, we

www.manaraa.com

190

can change device percentage brightness according to the desired value.

• Determining the display refresh rate: In order to get a supported display

refresh rate, we get a handler to the DISPLAY DEVICE using EnumDisplay-

Devices. Then, using EnumDisplaySettings, we can extract the display refresh

rate supported using dmDisplayFrequency.

Finally, the calibration module automatically performs the following steps with

the exception of the first step, which gives the user step-by-step instructions of how

to perform it:

1. Disable the power management policy, which suspends HD and changes the

processor’s frequency.

2. Terminate all running applications with the exception of BatteryExtender.

3. Get the list of all devices and disable all of them.

4. Set the display brightness to 75 percent because we noticed when platforms are

on battery, the power-management module changes the display brightness to

75.

5. Get the current display refresh rate, but keep it as its default setting.

6. Sleep for 120 seconds in order to avoid overhead from our changes.

7. Determine idle battery capacity consumption for 10 minutes by getting battery

capacity at t0, sleeping for 10 minutes, and then getting battery capacity at t1.

Then, we calculate the difference as shown in Equation 6.3.

8. Select one device from the list of PnP devices and enable it.

9. Sleep for 120 seconds.

10. Determine device battery capacity consumption for 10 minutes as described for

the idle case.

www.manaraa.com

191

11. Repeat the previous three steps until all devices have been profiled.

12. Change the display brightness to 25, 50, and 100 percent (one at a time) and

then repeat steps 9 and 10.

13. If the display supports multiple refresh rates, change the refresh rate and then

repeat steps 9 and 10.

14. Enable all devices.

15. Save the calibration values to an XML file.

Finally, by following this process, we can determine the power consumption of

each device. Equation 6.4 shows the relationship of energy in joules to watts per

second. Since our battery capacity is in milliwatts per hour, we can convert it to

joules as shown in Equation 6.5. Then, we can determine the platform’s average

power consumption by applying Equation 6.6, where d is the duration in seconds.

We conclude by calculating the power savings (gain) PSaving of the platform device

by applying Equation 6.7, where PIdle is the power consumed during idle scenario,

and PDevice is the power consumed when the device was enabled or the display was

set at a specific setting.

∆CX = CXt0 − CXt1 (6.3)

E(j) = P(W) ∗ T(S) (6.4)

E(j) = ∆C(mWh) ×
1

1000︸ ︷︷ ︸
Convert to Watt

× 3600︸︷︷︸
Convert to Seconds

(6.5)

P =
E(j)

d(s)
(6.6)

www.manaraa.com

192

PSaving = PDevice − PIdle (6.7)

Energy Profiling Module

The energy profiling module consists of two parts. The first part is to energy profile

the applications running on the platform, and the second is to energy profile the

platform devices.

Energy Profiling of Applications: In order to determine the energy con-

sumption of applications, we relied on the Machine Specific Registers (MSRs) of the

System-on-Chip (SoC). Basically, the processor provides a variety of MSRs, which

the processor uses to control and report processor performance. In order to be able

to read them, the application must run at the kernel level (Ring0). In our imple-

mentation, we rely on the MSRs provided by Intel processors (processors with the

code-name Ivy Bridge or later). We chose Intel processor’s in particular because Intel

currently dominates the market share for Windows platforms, with the exception of

Windows RT platforms which use a different manufacturer of processors.

Intel processors support four nonarchitectural MSRs for Running Average Power

Limit (RAPL) [15]. The first one is MSR RAPL POWER UNIT. This register con-

tains power units from bits (3:0), energy status units from bits (12:8), and time

units from bits (19:16). The remaining ones are MSR PKG ENERGY STATUS,

MSR PPO ENERGY STATUS, and MSR PP1 ENERGY STATUS, which report pack-

age, core, and graphics actual energy consumption. The MSRs are updated at ap-

proximately 1-ms intervals and the register wraparound time is about 60 seconds

when power consumption is high.

In order to energy profile the applications, first we initialize the driver and read

the power unit MSR determine the energy units. Then, at a 1-second interval, we

collected the battery capacity, energy MSRs, and processes running on the platform.

In order to get the list of processes, we got a snapshot of the processes and got a

www.manaraa.com

193

handler for each process. Through the handler, we were able to get the application

name using QueryFullProcessImageName; then, using GetProcessTimes, we retrieved

the processes’ creation time, exit time, kernel time, and user time. In addition, us-

ing NtQuerySystemInformation, we collect SystemProcessorPerformanceInformation.

Based on this information, determined the percentage of active time of the proces-

sor and each process. All metrics for processes belonging to the same application

were combined together. In order to calculate the energy used by package, core, and

graphics, we calculated the ∆EMSR based on Equation 6.8 for each energy MSR and

where U is the energy unit retrieved from MSR RAPL POWER UNIT.

Then, in order to allocate per-application energy consumption, we first need to

consider ”package energy” versus ”core energy”. In our approach, we considered the

package power consumption instead of just looking at the core power consumption.

We based this approach on our previous work [71], which highlights the importance of

aligning the utilization of cores in a multicore platform in order to allow the package

to remain in a low idle-power state for the longest possible duration. More specifically,

the platform in Figure 6.6 consumes less energy when compared to the platform in

Figure 6.5, even though the percentage of CPU utilization and energy consumption

of each core for the entire duration is the same in both scenarios. Since we are

considering package energy, which includes, both the core energy and the graphics

energy, we subtract the energy consumption of graphics from package. As a result, we

can calculate the total energy used by the CPU as shown in Equation 6.9. Finally, we

allocate the energy consumption of application X as EX as shown in Equation 6.10,

where UX is the percentage of CPU usage of application X. We saved this information

for each application in addition to the average Rate (power consumption) of the entire

platform during that period of time which can be calculated using Equation 6.11.

We repeated this profiling technique for 50 iterations because CPU utilization of

applications varies with time. One reading will not be enough to determine long-term

effect on the overall battery life. However, with 50 iterations, we can have a better

www.manaraa.com

194

overview of the CPU utilization pattern of applications without posing extensive

overhead of continuous polling of data. Upon completion, we got the average energy

consumption of each application. We also calculated the average discharge rate. Then,

in order to determine the battery life savings upon termination of the application

LifeSaving, we used Equation 6.12, where we estimated the current battery life based

on average discharge rate and we determine the savings by recalculating battery life

based on average discharge rate minus the application’s power consumption. Finally,

we rank the top 5 most power-consuming applications.

Applications consume resources other than the processor, such as memory and

disk. There are already many studies that can perform power profiling of memory

and disk. For instance, MemPower [83] is a tool that can trace the memory usage

and calculate power and energy consumption of the memory hardware. Dempsey

[102] is a disk simulation environment that includes accurate modeling of disk power

consumption. Despite the fact that we can collect per-process memory usage and disk

usage, we do not add the per-process energy usage of either one (memory or disk) to

the processor’s power usage because our tool’s goal is to be used without any external

measurement tools. In addition, we do not want to limit its usability to a subset of

available platforms. As a workaround, we provide BatteryExtender users with the

extra option of adding as an input the known MemoryRead and MemoryWrite power

consumption values and/or DiskRead and DiskWrite power consumption values. In

that case, the tool will collect the memory and disk utilization values and factor them

into the overall estimated energy consumption of each application. If this information

is not provided, we disregard the values.

∆EMSR = {Et0 − Et1} ∗ U (6.8)

EAll = ∆EPackage −∆EGraphics (6.9)

www.manaraa.com

195

Figure 6.5: One core is active at each timestamp, resulting in an active package.

Figure 6.6: Two cores are active at timestamp 0, resulting in an active package,
and are both idle at timestamp 1, resulting in an idle package.

EX = EAll ∗ UX (6.10)

RateAvg =
∆C

∆t
(6.11)

LifeSaving =
C

RateAvg − PApp

− C

RateAvg

(6.12)

Energy Profiling of Platform Devices. In order to energy profile platform

components, we use the XML file generated by the calibration module. Then, we

iterate through all available devices in order to determine their state (active or dis-

abled) in addition to checking the display brightness and refresh rate. Then, using

Equation 6.13, we can calculate the life savings (or lost) LifeSaving, where PSaving is

calculated based on Equation 6.7 and where RateAvg is the same number as the one

calculated during energy profiling of applications.

www.manaraa.com

196

LifeSaving =
C

RateAvg − PSaving

− C

RateAvg

(6.13)

User-Interactive Module and Power-Management Module

The user-interactive module is built using MFC Visual C++. Upon completion of

the energy-profiling module, the user-interface in the user interactive module gets

updated. The users will be able to see all the devices they can control and their

estimated battery life savings. In addition, they will see the top 5 battery-consuming

applications with their estimated battery life saving. Using a checkbox, they can

select the devices they want to control and the applications they want to terminate.

By confirming their selection, the power-management module is triggered to change

the device’s state as described in the calibration module based on the user’s selection.

In addition, using the process’s ID, we can issue terminate process. Finally, the power-

management module calculates the estimated battery life savings by adding up all the

life savings values based on the changes confirmed by the user. Then, it calculates the

minimum life savings duration between original duration selected by the user and the

expected life savings calculated. Using this information, the tool can calculate the

required battery duration LifeReq, as shown in Equation 6.14, where LifeCurrent is the

battery life prior to platform reconfiguration and LifeMin is the calculated minimum

life savings. Finally, it passes the value of LifeReq to the monitoring module.

LifeReq = LifeCurrent + LifeMin (6.14)

Monitoring Module

In order to start monitoring battery life, a new thread is created. At a 2-minute

interval, it collects the expected battery life as described in section 6.5.2. It subtracts

interval time i from LifeReq as shown in Equation 6.15 and then compares the value

to the expected battery life collected. If after five iterations, LifeReq is less than

www.manaraa.com

197

expected battery life, the user is notified that the expected battery life is less than

the required battery life. At this point, the user can either energy profile the platform

again or terminate the monitoring module. If there are not five consecutive errors,

the monitoring module continues to monitor until the LifeReq reaches 2 minutes.

LifeReq = LifeReq − i (6.15)

Other Useful Features for Users

We also implemented three additional useful features:

• Battery Usage Interface: The battery usage interface enables the users to

collect a log of battery metrics, including timestamp, capacity, discharge rate,

voltage, and expected battery life. The collection interval is 30 seconds, and

users can save the collected log to a csv file or delete the data and start over.

• Interface for Power Profiling of Applications: In our energy-profiling

module, we collect the energy consumption of applications for only 50 seconds

since we want to minimize the overhead. However, if a user wishes to power

profile applications, they can use the interface for power profiling of applica-

tions. The interface enables users to see in real time the power consumption of

applications using the method described in ”Energy Profiling of Applications”

section.

• Battery Information Interface: We also provide an interface that gives a

detailed description of the battery such as its chemistry and wear level.

Finally, this summarizes our BatteryExtender implementation.

www.manaraa.com

198

6.6 Experimental Analysis

Validating BatteryExtender consists of two parts: validating the tool in terms of

reconfiguration of the hardware device components in order to save energy, and vali-

dating in terms of energy profiling of applications.

In order to validate our tool in terms of reconfiguration of the hardware device

components, we ran a set of scenarios using the two platforms as described in Ta-

bles 6.1 and 6.2. The scenarios chosen are: download, video playback, and video

streaming. Prior to running our experiments, we set the power-management pol-

icy to the default platform settings and terminated all (foreground and background)

applications with the exception of BatteryExtender and the test application.

For each scenario, we ran two test cases. The first test case is the default case

(DF), where we use the default platform settings. The second test case is the Bat-

teryExtender case (BE), where users’ commands are set to extend the battery life for

”10 minutes.” We chose ”10 minutes” as opposed to a different duration because our

goal was to determine the following: (1) whether can save battery by examining the

amount of battery capacity saved, and (2) the accuracy of our tool based on expected

capacity savings (based on the combination of choices selected) and actual capacity

savings. In this test case, we changed the platform configuration based on the test

scenario. For example, when Wi-Fi was not needed, we disabled it.

During all our experiments, we collected the battery metrics using our ”Battery

Usage” GUI as described in Section 6.5.3. We basically started collecting the battery

metrics at the start of the test scenario, and upon completion, we stopped collecting

the battery metrics and saved the log file.

During our experiments, we calculated actual total capacity used (energy used)

by test case X denoted as ∆CX as shown in Equation 6.3 where CXt0 is the capacity

at beginning of test case X and CXt1 is the capacity at the end of the same test case.

In addition, we calculated the actual total capacity savings (total saved en-

ergy) for scenario X denoted as ATsavX as shown in Equation 6.16 where we get the

www.manaraa.com

199

difference between total capacity used by DF test case and the one used by BE test

case.

We also calculated the expected capacity savings for scenario X denoted as

EsavX
as shown in Equation 6.17 where n is the total number of disabled or modified

devices and EsavD
is expected capacity savings for device D for duration dbase in

minutes.

Moreover, we calculated the total expected capacity savings for scenario X

denoted as ETsavX
as shown in Equation 6.18 where dX is the total test duration in

minutes.

AT savX = ∆CDF −∆CBE (6.16)

EsavX
=

n∑
D=1

EsavD
, dbase = 10 (6.17)

ETsavX
=

EsavX × dX
dbase

(6.18)

In order to validate BatteryExtender in terms of energy profiling of applications,

we ran applications on the platform under testing. Then, using BatteryExtender, we

profiled the energy used by the applications. Then, we terminated the applications

using the User Interface Module and observed the impact on the platform’s overall

energy consumption.

The following subsections contain the calibration results in addition to detailed

description and results for each scenario for validating the reconfiguration of device

hardware components in addition to other case studies related to energy consumption

of mobile devices. We also present the results for validating BatteryExtender in terms

of energy profiling of applications.

www.manaraa.com

200

6.6.1 Calibration Results

First of all, we ran the calibration module on each device. Table 6.4 represents the

values collected for Dell Convertible, and Table 6.5 represents the values collected

for Surface 2 Pro. All devices in the table are self-explanatory with the exception of

”USB Root Device (xHCI)” in Table 6.4. By disabling this device, we disable USB

input, HID Sensor Collection, the camera, and the Bluetooth adapter. Based on these

results, it is evident that the same components, on different platforms, can consume

different amounts of battery capacity.

Device Capacity used Capacity

Dell Convertible in 10 minutes saved

Idle @ 75 Brightness 1070 0

WiFi 1190 120

Bluetooth 1099 29

NFC 1075 5

HID Sensor Collection 1080 10

VS Location Simulator 1080 10

Touchscreen Sensor 1080 10

Audio 1080 10

Camera 1090 20

Printer Queue 1080 10

USB Root Device (xHCI) 1150 80

Refresh @ 59 Hz 1050 20

Brightness @ 25 880 190

Brightness @ 50 990 80

Brightness @ 100 1180 -(110)

Table 6.4: Calibration results for Dell Convertible.

6.6.2 Download Scenario

The first scenario is the download scenario. During this scenario, we used Amazon

Unbox Video Player [9] to download a previously purchased movie. We chose to

download on each platform ”Despicable Me” in HD, where the movie size is 1.91 GB.

www.manaraa.com

201

Device: Capacity used Capacity

Surface 2 Pro in 10 minutes saved

Idle @ 75 Brightness 740 0

WiFi 792 52

Bluetooth 769 29

HID Sensor Collection 748 8

VS Location Simulator 748 8

Pen Sensor 747 7

Touchscreen Sensor 747 7

Audio 752 12

Camera Rear 745 5

Camera Front 745 5

Printer Queue 750 10

Brightness @ 25 604 136

Brightness @ 50 670 70

Brightness @ 100 947 -(207)

Table 6.5: Calibration results for Surface 2 Pro.

For the Default (DF) test case, we started BatteryExtender. Then, using the ”bat-

tery usage” UI, we started collecting the battery capacity remaining at a 30-second

interval. Next, we started Amazon Unbox Video Player, selected the movie, and

pressed on download. Upon completion of download, we stopped collecting ”battery

usage” and saved the log.

For the BatteryExtender (BE) test case, we started BE and set 10 minutes for

extension duration. Then, we selected the following metrics as shown in Table 6.6 for

Dell Convertible and in Table 6.7. Next, using the ”battery usage” UI, we started

collecting the battery capacity remaining at a 30-second interval. We then started

Amazon Unbox Video Player, selected the movie, and pressed on download. Upon

completion of download, we stopped collecting ”battery usage” and saved the log.

The results comparing DF versus BE test cases for Dell Convertible are displayed

in Figure 6.7. A major issue was observed in this scenario. The download duration

during default settings took 3750 seconds (1 hour, 2 minutes, and 30 seconds), whereas

the download duration during BE scenario took 1080 seconds (18 minutes), 71.2 %

www.manaraa.com

202

Figure 6.7: Battery capacity over time during download scenario for Dell Convert-
ible.

faster than default test case. In addition, the ∆CDF is 8980, whereas the ∆CBE is

2440. The ATsav is 6540, for a total of 72.83% savings. These results far exceeded

our expectation and at first glance appeared to be abnormal.

In order to determine the cause of this huge savings, we conducted further analysis.

We determined that by enabling ”USB Root Device (xHCI),” the download speed as

shown by the application drops from an average of 17.4 Mbps to 4528 Kbps. In

addition, the CPU utilization jumps from an average of 10% to 18%. Moreover, the

average memory utilization jumps from an average of 32% to 55%, and the average

cache of 558 MB to gradually reaching 1.6 GB. The cause of this change is due to the

”Network Security Service,” which we managed to disable when disabling ”USB Root

Device (xHCI).” Network security is definitely an important feature, but increasing

the download time by 71.2% is unacceptable to most mobile device users. So, it is

definitely an issue to be examined.

The results comparing DF versus BE test cases for Surface 2 Pro are displayed

in Figure 6.8. The ∆CDF is 2211, whereas the ∆CBE is 1865. The test duration was

16.5 minutes for both test cases. The ATsav is 346, for a total of 15.65% savings. Our

ETsav is 374.55, which results in a 92.37% accuracy rate.

www.manaraa.com

203

Disabled Expected capacity

devices saving in 10 minutes

NFC 5

VS Location Simulator 10

Touchscreen Sensor 10

Audio 10

Printer Queue 10

USB Root Device (xHCI) 80

Refresh @ 59 Hz 20

Brightness @ 25 190

Expected Savings in 10 minutes 335

Table 6.6: Disabled devices and display settings associated with expected capacity
savings during download scenario for Dell Convertible.

Figure 6.8: Battery capacity over time during download scenario for Surface 2 Pro.

6.6.3 Video Playback Scenario

The video playback scenario consists of watching a movie using Amazon Unbox Video

Player. We played ”Despicable Me” in HD. The movie duration is 95 minutes.

We ran both test cases DF and BE and collected the battery metrics as described

in the previous scenario. We selected the following metrics to disable (change in the

case of display), as shown in Table 6.10 for Dell Convertible and in Table 6.9 for

Surface 2 Pro.

The results comparing DF versus BE test cases for Dell Convertible are displayed

in Figure 6.9. Energy consumed during DF ∆CDF is 15,450, whereas the ∆CBE is

www.manaraa.com

204

Disabled Expected capacity

devices savings 10 minutes

Bluetooth 29

HID Sensor Collection 8

VS Location Simulator 8

Pen Sensor 7

Touchscreen Sensor 7

Audio 12

Camera Rear 5

Camera Front 5

Printer Queue 10

Brightness @ 25 136

Expected Savings in 10 minutes 227

Table 6.7: Disabled devices and display settings associated with expected capacity
savings during download scenario for Surface 2 Pro.

12,327. The ATsav is 3,123, for a total of 20.21% savings, whereas the ETsav is 3,087.5.

Based on these results, the accuracy rate is 98.86 %. In this case, despite the fact

that we disable ”USB Root Device (xHCI),” our accuracy rate remained high because

Wi-Fi was disabled.

The results comparing DF versus BE test cases for Surface 2 Pro are displayed in

Figure 6.10. The ∆CDF is 9,435, whereas the ∆CBE is 8,194. The ATsav is 1,241, for

a total of 13.15% savings. Our ETsav is 1,244.5, which results in a 99.72% accuracy

rate.

6.6.4 Video Streaming Scenario

The video streaming scenario consists of watching a movie using YouTube. The movie

selected is ”Elephant Dreams in HD” playing for 10 minutes. We ran both test cases

DF and BE and collected the battery metrics as described in the previous scenario.

We selected the following metrics to disable (change in the case of display), as shown

in Table 6.10 for Dell Convertible and in Table 6.11 for Surface 2 Pro.

www.manaraa.com

205

Disabled Expected capacity

devices savings in 10 minutes

WiFi 120

NFC 5

Touchscreen Sensor 10

Printer Queue 10

USB Root Device (xHCI) 80

Refresh @ 59 Hz 20

Brightness @ 50 80

Expected Savings in 10 minutes 325

Table 6.8: Disabled devices and display settings associated with expected capacity
savings during video playback scenario for Dell Convertible.

Figure 6.9: Battery capacity over time during video playback scenario for Dell Con-
vertible.

The results comparing DF versus BE test cases for Dell Convertible are displayed

in Figure 6.11. Energy consumed during DF ∆CDF is 3080, whereas the ∆CBE is

2,170. The ATsav is 910, for a total of 29.54% in energy savings, whereas the ET(sav)

is 225.5. In this case, even though ”USB Root Device (xHCI)” was disabled, we

were able to watch the movie without any time waiting for buffering. However, the

CPU and memory activities again spiked due to the security service. As a result, the

percentage of energy savings far exceeded our expectations but wasn’t as significant

as in the download scenario.

The results comparing DF versus BE test cases for Surface 2 Pro are displayed in

www.manaraa.com

206

Disabled Expected capacity

devices savings 10 minutes

WiFi 52

Bluetooth 29

HID Sensor Collection 8

VS Location Simulator 8

Pen Sensor 7

Touchscreen Sensor 7

Camera Rear 5

Camera Front 5

Printer Queue 10

Expected Savings in 10 minutes 131

Table 6.9: Disabled devices and display settings associated with expected capacity
savings during during video playback scenario for Surface 2 Pro.

Figure 6.10: Battery capacity over time during video playback scenario for Surface
2 Pro.

Figure 6.12. The ∆CDF is 1,694, whereas the ∆CBE is 1,524. The ATsav is 170, for a

total of 10.03% savings. Our ETsav is 163.9, which results in a 96.41% accuracy rate.

6.6.5 Other Case Studies

We also performed other case studies to evaluate some functionality utilized by users

in order to determine their impact on battery drainage. More specifically, we evalu-

ated the impact of using touchscreen versus the keyboard and the impact of changing

device orientation on energy consumption.

www.manaraa.com

207

Disabled Expected capacity

devices saving in 10 minutes

NFC 5

Touchscreen Sensor 10

Printer Queue 10

USB Root Device (xHCI) 80

Refresh @ 59 Hz 20

Brightness @ 50 80

Expected Savings in 10 minutes 205

Table 6.10: Disabled devices and display settings associated with expected capacity
savings during video streaming scenario for Dell Convertible.

Figure 6.11: Battery capacity over time during video streaming scenario for Dell
Convertible.

Figure 6.12: Battery capacity over time during video streaming scenario for Surface
2 Pro.

www.manaraa.com

208

Disabled Expected capacity

devices savings 10 minutes

Bluetooth 29

HID Sensor Collection 8

VS Location Simulator 8

Pen Sensor 7

Touchscreen Sensor 7

Camera Rear 5

Camera Front 5

Printer Queue 10

Brightness @ 50% 70

Expected Savings in 10 minutes 149

Table 6.11: Disabled devices and display settings associated with expected capacity
savings during during video playback scenario for Surface 2 Pro.

Touchscreen vs. Keyboard

This case study was performed in order to evaluate the impact of using touchscreen

versus keyboard on the energy consumption of mobile devices. We used Dell Con-

vertible, which comes equipped with a built-in keyboard and has a 10-touchpoint

touchscreen. During this case study, we browsed 100 pictures by double clicking

(tapping in the case of touch) on a picture, viewing it in the Windows 8 default

picture viewer, swiping from the right edge of the screen, clicking (tapping) on the

Start option, clicking (tapping) on Desktop, and then double clicking (tapping) on

the next picture. We repeated these steps until we viewed all 100 pictures. The test

duration was 10 minutes, during which we collected the changes in capacity similar

to the previous test scenarios. Figure 6.13 represents the battery capacity over time

during the touchscreen versus keyboard test scenario. Based on our results, during

the touchscreen test case, ∆CTouch is 1480 mWh whereas ∆CKeyboard is 1590 mWh

during keyboard test case. As a result, by using touchscreen for commands instead

of the keyboard, we can save 6.91% in energy.

www.manaraa.com

209

Figure 6.13: Battery capacity over time during touchscreen vs. keyboard test cases
for Dell Convertible.

Impact of Changing Device Orientation on the Energy Consumption

This case study was performed in order to evaluate the impact of changing device

orientation on the energy consumption of mobile devices. We used Surface 2 Pro

during this case study. We ran an ”Elephant Dreams HD” movie using YouTube. We

ran the test for 5 minutes, during which we rotated the device 90 degrees 15 times

per minute. Figure 6.14 represents the battery capacity changes over time for the

test case where we changed the landscape and the test scenario without changing

landscape. We consumed 763 mWh when we kept the device in the same orientation

and 871 mWh when we changed the orientation. As a result, changing the device

orientation cost the user 12.39% more energy.

6.6.6 Validating Energy Profiling of Applications

In order to validate BatteryExtender in terms of energy profiling of applications, we

used Surface 2 Pro. We chose to extend battery life for ”10 minutes” for the same

reason as described when validating BatteryExtender in terms of platform reconfig-

uration. BatteryExtender was able to detect ”Symantec Antivirus” running in the

background with 22.14% CPU utilization and an estimated 2,331 mW of power usage.

www.manaraa.com

210

Figure 6.14: Battery capacity over time during effect of landscape change for Surface
2 Pro.

Using battery usage interface, we collected the battery discharge rate (power) prior

to terminating the app and the collected it again after 30 seconds after terminating

the application. We noticed that the discharge rate dropped by 2,562 mW after ter-

minating the application. As a result, the accuracy rate was 90.98%. Similarly, we

repeated the validation steps, but we selected a different application to terminate.

The application selected was Google Chrome, which was video streaming a YouTube

video. Based on BatteryExtender, YouTube was utilizing 2.28% of CPU usage con-

suming 555 mW. Upon termination, we noticed that the discharge rate dropped by

608 mW. As a result, the accuracy rate was 90.46%. Finally, it is clear that, using the

current implementation of BatteryExtender we can power profile applications with

relatively high accuracy rate despite. Since we are not considering memory or disk

power consumption, our estimation of battery savings can be conservative. However,

this technique still satisfies BatteryExtender’s goals.

6.7 Conclusion and Future Work

In this paper, we presented BatteryExtender, a tool that enables users to extend

battery life on demand. It enables users to reconfigure the mobile devices in order to

utilize only the resources required for their specific tasks. It also provides an estimate

www.manaraa.com

211

of the impact of applications on the overall battery life. Using BatteryExtender, we

were able to reduce energy consumption between 10.03 and 20.21 percent, depending

on the workload. The accuracy rate ranged between 92.37 and 99.72 percent. In

addition, in some rare cases, we were able to reduce energy consumption by 72.83

percent due to the platform’s inefficient security service. In the future, we are planning

on improving our resource power-consumption estimation by continuously profiling

the platform when battery life is not an important resource for the user.

www.manaraa.com

212

CHAPTER 7: ENERGY

EFFICIENCY OF

SYSTEM-ON-CHIP DEVICES

7.1 Introduction

It’s no secret that smartphones and tablets are increasingly becoming the ubiquitous

choice of computing up to the point where they are affecting the sales of PCs. The

number of Internet-connected devices is expected to reach 25 billion by 2015 and 50

billion by 2020 [27]. Users of these mobile devices believe in the “always connected”

and “anywhere computing” paradigm. They want to be connected to their emails

and their social media outlets (Facebook, Twitter) anytime and all the time. They

want to be able to watch their movies or make Skype calls with the highest-possible

definition. Of course, they also want to be able to download/upload their YouTube

videos and pictures as fast as possible. Despite all of these wants, users still mandate

a long battery life. They even expect a battery life comparable to that of their

traditional-feature phones.

One major obstacle to the extension of these devices’ battery life is their strict

weight and handheld property, which prevents the extension of the battery size. As

a result, the extension of battery life becomes limited on the ability to optimize the

battery usage of applications using the underlying hardware and the optimization of

the battery usage of the hardware.

All the above user requirements and the devices’ physical requirements dictate

how mobile System-on-Chip (SoC) vendors design their overall system: suddenly,

scalability and low power are factors that veto any feature upgrade or changes to

www.manaraa.com

213

the design. Thus, the combination of hardware, software, and connectivity makes a

platform’s energy efficiency extremely important.

As difficult as it looks, SoC vendors are now increasingly employing the concept of

”offloading” to their designs to address the twin problems mentioned above. Designs

today integrate special-purpose digital signal processors (DSPs) and accelerators into

the design and enable software developers to use these tiny engines.

To increase these SoCs’ energy efficiency, we must understand their power con-

sumption. Because SoCs comprise a large number of subcomponents, each contribut-

ing to the overall power consumption, it becomes necessary to consider those com-

ponents when power profiling the devices, especially considering that the IP compo-

nents are often responsible for a substantial portion of the SoC’s power consumption.

Therefore, it is important to power model and consider their effect in power-aware

SoC design.

There are already many software- and hardware-based powerprofiling techniques

that range between fine- and coarse-grained granularity. For the most part, system-

level power analyses have focused on the processor, memory hierarchy, and inter-

connect when power profiling a system. Relatively little work has been done for

modeling the power consumption of IP components and their impact on system-level

trade-offs. Thus, despite the usefulness of the current profiling tools, there is still

room for improvement because the nature of SoC devices requires even-finer sophisti-

cated measurement tools in order to further optimize Intellectual Property (IP) block

offloading.

7.1.1 Contribution

We make the following contributions in this paper:

• We highlight the importance of offloading and show how it can be effective in

energy optimization for SoC devices. We provide supporting data for our claims

www.manaraa.com

214

by including thermal images of an SOC while offloading was enabled and while

it was disabled.

• We make a strong case for new power profiling tools that take a holistic view of

the systems, including peripherals and accelerators that are beyond the CPU.

We provide two case studies, one using GPU/CPU for video decoding and

one using DSP/CPU for audio decoding, to show that today’s SoC devices

require very fine and sophisticated power profiling tools to account for the SoC’s

exercised offloading mechanism of functionality to different IP blocks.

• We show that current software-based power profiling techniques for SoCs can

provide an error rate close to 12%. Thus, they cannot be used for increasing

the energy efficiency of workloads, which offload from CPU to the dedicated IP

blocks.

7.1.2 Organization

This chapter is organized as follows: In Section 7.2, we give an overview of SoCs,

including challenges and advantages. In Section 7.3, we explain the art of offloading

and show its advantages. In Sections 7.4 and 7.5, we present both a profiling method-

ology for SoCs and two case studies: one power-profiling the SoC when utilizing the

Graphics IP unit and one utilizing the Audio IP unit. Finally, we provide analysis

and our conclusions in Section 7.6.

7.2 Overview of System-on-Chip

The SoC paradigm is currently the dominating architecture within mobile devices.

The term ”system-on-chip” (SoC) represents two things: the physical architecture of

the product and the methodology used to design it.

www.manaraa.com

215

• SOC Physical Architecture: SOCs integrate several subsystems, where tra-

ditionally many or all of which would have been separate discrete chips, into a

single chip. The SoC may be a single silicon die, or possibly many dies inside

a single package. Either way, an SoC is rarely the entire system on that single

chip, but it usually encompasses the device’s computing functions. Typical SoC

subsystems include: the CPU (with one or many cores), memory, input/output

(I/O), and storage, in addition to media such as video and audio, graphics, and

camera.

• SOC Methodology: The SoC building methodology comprises two indepen-

dent phases: the independent building of modular IP blocks, which represents

the SoC’s subsystems, and the integration of the IP blocks into a specific prod-

uct, transforming all the components into a single integrated product.

This SoC building methodology is necessary because each device utilizing an

SoC defines the SOC requirements on the basis of the intended use of the device.

Therefore, we cannot use the same SoC for a smartphone and a tablet. Both

devices may share the same CPU cores, but the smartphone’s SoCs might utilize

a Digital Single Length Reflex (DSLR) camera functionality while the tablet

may include more sophisticated graphics and media for watching high-definition

movies and playing 3D games.

Figure 7.1 displays the overall architecture for Intel’s Medfield SoC platform with

an Intel Atom processor. The SoC contains many hardware accelerators such as a

dedicated Image Signal Processor (ISP) for high-performance imaging, a PowerVR

SGX540 2D/3D hardware engine for high-performance graphics and games, and a

special low-power Audio Digital Signal Processing (DSP) for voice applications. Based

on Figure 7.1, it is very clear that the bulk of the SoC is made up of special-purpose

accelerators.

www.manaraa.com

216

Figure 7.1: Medfield SoC Block Diagram - Penwell SOC (Intel Hi-K 32 nm Process
Technology

7.2.1 Challenges of SoCs

Developing SoC devices is challenging for a variety of reasons, including integration

of third-party IP modules, low-cost design and manufacturing requirements, limited

hardware resources, and highly constrained power budgets.

Power issues are traditionally considered hardware problems, while software fo-

cuses on features and flexibility. However, power consumption is highly software-

dependent and does not necessarily correlate well to thermal design power (TDP)

specifications [42]. Therefore, hardware and software developers should be aware of

energy consumption and seek to co-design SoC devices, to further improve the power

consumption.

Traditional hardware and software co-design techniques focus on static partition-

ing or allocation of system resources to hardware and software, to implement specific

applications such as video or audio encoder. As more functionality gets integrated

into SoCs, traditional partitioning is not sufficient to optimally run multiple ap-

www.manaraa.com

217

plications that have different performance, power, and thermal requirements. This

motivates looking at new approaches to target overall power/thermal requirements,

for energy-efficient SoC devices.

So far, the energy-awareness response has been focused on dynamic allocation

within the CPU. The energy-aware processor delivers high performance when needed

while consuming minimum active and idle energy when the CPU is not active [85].

Because IP blocks reside in a lower layer of the system than hardware components,

traditional coarse-grained power management cannot accurately control the power

states of IP blocks. For example, when a user touches the screen, several components

will remain active to handle this user interaction. However, from the angle of IP

block, some of the IP blocks are not used for handling tasks, and thus could be

turned off to save energy. Secondly, because the current power-management system

does not use software information, and manages hardware power states in a passive

way, a delay between satisfying the conditions and updating hardware power states is

inevitable. Because applications’ activities have a direct relationship with hardware

power status, software information could be used to aggressively set up the power

states of hardware and improve the system’s energy efficiency.

7.3 The Art of Offloading

It is very common (and right) to offload a task from the main processor to a specialized

custom engine. The Application-Specific Standard Processor (ASSP) fraternity goes

to the extreme of stitching up a totally fixed function engine to realize the best

throughput efficiency and usage of the engine for a given workload. It is indeed true

that a fixed-function compute engine unit for a Discrete Cosine Transform (DCT) is

always more energy efficient and better throughput than running the DCT on a CPU.

One important point that often gets missed is the importance of the rest of the

SoC components when tasks are offloaded. So far, because the CPU is the critical

www.manaraa.com

218

owner for any ”compute” process, the CPU decides the state of resources such as the

SoC interconnect, memory controllers, and the path to memory. Whenever the CPU

is being used, most of these high-power connections are turned on, which can equally

add to the entire platform power consumption.

7.3.1 Advantages of Offloading

Integrating custom, special-function accelerators is one of the most complex exercises

in low-power SoC architecture. Yet, designers willingly take up this challenge in return

for the power benefits that these units provide, including more-efficient computing

and an optimized path to memory.

Efficient Computing. Many multimedia operations such as video and audio

processing, for example, rely on signal-processing concepts. Fundamental DSP algo-

rithms, such as filters and transforms, depend on very fast multiply-and-accumulate

operations. Furthermore, very low-latency outputs in a video frame or audio sync in-

terval require the most efficient parallel processing between multiple execution units.

Several architectures, including very long instruction word (VLIW) and single instruc-

tion, multiple data (SIMD) operations, support such capabilities. Fixed-compute

function power budgets are much lower using a fixed-functionality engine than using

a general-purpose CPU.

In order to highlight the importance of offloading, we used a thermal imaging tool

in two scenarios: first, we ran audio playback without offloading, as Figure 7.2 shows,

then we ran audio playback with audio DSP offloading, as Figure 7.3 shows.

Figures 7.2a and 7.3a represent the Medfield SoC with each component’s location;

Figures 7.2b and 7.3b show the thermal image of this SoC.

Figure 7.2 shows audio playback without audio offloading. The temperature in-

creases from blue to green and from green to red as shown in the thermal scale in

Figure 7.4. Based on the thermal scale, the CPU is active, because it has the color

green and all the remaining non-blue areas show the transistors are active as well.

www.manaraa.com

219

Figure 7.3 shows audio playback with offloading and its corresponding thermal

image. The thermal image shows the CPU switched off and the execution is running

on the audio DSP. Many parts of the SoC are either shut off or optimized for low

power consumption; indeed, almost the entire SoC is switched off, barring a few green

spots indicating where executions are still running.

In Figure 7.2b, most IP blocks on the SoC are green because we aren’t managing

power efficiently. In contrast, in Figure 7.3b, most of the parts are either in low power

or completely shut off, such as the Image Signal Process Unit, because we are not pro-

cessing image signals and the CPU isn’t in use. However, the video encoder/decoder

IP block is green because we are offloading to it. The power management unit is also

green because it needs to manage the power on the SoC. With these optimizations,

the platform’s capability for low-power audio playback increases the battery life to

approximately 120 hours.

Optimized Path to Memory. The SoC can also save power by optimizing

the path to memory from offload engines. A fixed-function accelerator has a finite

bandwidth capability; therefore, SoC designers can reduce the interconnect speeds to

save power. In addition, because operations are performed on the accelerators, it is

possible to turn off the CPU and put the SoC in a special low-power state.

Figure 7.2: Medfield thermal image during audio playback without offloading.

www.manaraa.com

220

Figure 7.3: Medfield thermal image during audio playback.

Figure 7.4: Thermal scale.

7.4 Profiling Methodology

We used different hardware to evaluate the fine-grained energy efficiency of an IP unit

on the SoC. One of the test systems is called “Host,” where data were collected. Host

is connected to National Instrumented Data Acquisition (DAQ), which is calibrated

for collecting accurate voltage as low as 1 mwatt and 1000 samples/sec [57]. The

Active Signal Conditioning Card (SCA) is an analog signal conditioning front end

for the National Instruments DAQ. The board has been designed to filter out noise

typically found in a client system environment. DAQ has been configured to monitor

several rails (each unit on the device under test) simultaneously and has an analog-

to-digital converter with channel multiplexer. Another part of DAQ is connected to

the “Target,” which is the system under test. The system under test is based on

the most current Intel 4th Generation processor low-processor SKU (Haswell). This

processor features dual cores with multithreading and integrated graphics running

a Windows 8 operating system [58]. The system is running on DC mode and a

frequency of 0.8 MHz when idle. Figure 7.5 shows a detailed setup of the system.

www.manaraa.com

221

“Host” collects and calculates the power by post-processing the channel input from

DAQ. Each channel collects the data at a specified interval. In order to ensure a

Figure 7.5: Power instrument flow diagram.

fair evaluation of different IP units, we calculated the delta of savings instead of the

obsolete power number and ran each workload for 3 times as long to remove the

variances of idle power. Figure 7.6 shows the delta variance between each run. The

x -axis is tested by turning background activities off or on. As we moved from Test

1 to Test 3, there was a significant decrease in variance. Because we were looking

for very fine granularity of power to find impact on IP unit, we needed to make sure

variance between run-to-run is less than 0.05%. With Test 3, we achieved very low

variance for package power which is SoC power, memory power, and audio device

power on the platform.

Moreover, the instrumented system is fully functional, safe, and validated using

high-end volt meter. The reason we chose to use a DAQ instead of other available

software estimation tools is referred in Gurumurthi et al. [50], Brooks et al. [31],

and Vijaykrishnan et al. [98]. The use of DAQ is crucial in this experiment since

we not only focus on why IP units are important but we also show mW savings due

to IP units and the possible techniques for IP units optimization. All of these goals

definitely require significantly less variance and high granulating readings than any

www.manaraa.com

222

other available software-based profiling tool.

Figure 7.6: Variance of different OS configurations.

7.5 Experimental Results

In this section, we present two case studies that use IP offloading. The first case

study evaluates the Graphics IP Unit, and the second case study evaluates the Audio

IP Unit. Both case studies used the profiling methodologies as described in Section

7.4.

7.5.1 Case Study 1: Evaluation of Graphics IP Unit

Many studies have been published on the use of graphics offload versus running on a

CPU. Streaming media power saving due to graphics unit offload has been discussed

in the Intel Media Software Development Kit [91]. In this chapter, we build on the

studies done in the streaming media field and extend them to optimize how the IP

unit can be used and measure the power savings. In addition, this study shows

usage of DAQ where we can measure small power gains versus software-based power

estimation.

We run 1080p high-definition clip on a popular media player. We used the Blender

foundation-based Elephant dream 1080p H264 clip for our experiment [41]. We tuned

www.manaraa.com

223

the software to either use hardware offload using graphics or only use software via

the source code. The pseudocode in Figure 7.7 shows the call to be made to either

do software or hardware processing.

Figure 7.7: Pseudocode for software and hardware offloading.

First, we ran the tests without utilizing IP offloading. In order to validate if the

application is not using hardware IP offload, we used Microsoft GPUView tool to

find the wakeup activities in graphics [53]. Figure 7.8 shows that the GPU hardware

queue is empty while the application was doing media on local playback. Figure 7.9

shows the CPU utilization had been blocked during the processing, which means that

the application was not performing any IP offload.

Then, we ran the test with the utilization of IP offloading. We also used software-

based optimization and offloaded the content from CPU to graphics IP block. Figure

7.10, displays the impact of GPU offload on the CPU. The decode queue has been

offloaded to the GPU IP, and the state of the CPU is changed to low power. Note

that the processing of the frame remains the same, but owing to the use of IP block,

the processing becomes more efficient and high performance.

Running the DAQ instrumentation on the platform before and after using the IP

block let us notice significant power savings. Figure 7.11 represents the delta of power

savings when using offloading compared to without offloading.

Despite these power savings while using offloading, there is still room for opti-

mization. There is a need of optimizing the GPU IP pipeline and GPU calls from

software. We used Microsoft GPUView to analyze the calls made to GPU and op-

timize to gain mW of savings [53]. Figure 7.12 shows the CPU/GPU unalignment

www.manaraa.com

224

during the offload. CPU activities are when an application is running on the CPU and

ready to submit work to the GPU, while GPU activities shows the call after the CPU

has submitted the job to the GPU. During the same duration, the CPU is blocked

and waiting for the GPU to complete the job. The solution is to overlap GPU/CPU

activities and unblock the CPU while the GPU is doing render processing.

Even though offloading to IP units gives power savings in watts, there’s still signif-

icant room for improvement which can go undetected using software-based estimation

tools. Internal studies have shown that current software-based estimations have huge

variance with a small power delta. Using DAQ, we found the impact of power in a

few hundred milliwatts due to unalignment and CPU/GPU concurrency issues.

Figure 7.14 shows the results in delta of power saving measured from an internal

software tool with approximately 90% accuracy compared to DAQ. Table 7.1 shows

that as the optimization opportunity becomes smaller, the error of measurement

increases, and thus there is need for DAQ to get the low-power saving of specific IP

units.

Figure 7.8: GPUView with empty queue.

7.5.2 Case Study 2: Evaluation of Audio IP Unit

Analyzing the SoC power is very important. There are already software estimation

tools to provide the delta for huge power savings, but in today’s era of computing

www.manaraa.com

225

Figure 7.9: CPU activities during playback.

Figure 7.10: Impact of GPU offload on CPU.

Figure 7.11: Power savings real-time for GPU offload.

www.manaraa.com

226

Figure 7.12: CPU/GPU concurrency and overlap.

platforms, optimization is more important. Power estimation of SoC apart from the

platform is difficult. In this case study, we provide analysis of audio offload and power

estimation using DAQ.

We used Microsoft hardware offload for audio processing to find the impact of

audio offload on and off power. In addition, we used Blender foundation Elephant

dreams for testing the audio and its optimization [41]. Using Windows 8 audio archi-

tecture, we created a knob in the media playback application to use audio DSP.

As shown in Figure 7.13, two scenarios were tested for the requirements of fine-

grained IP units: Audio DSP by bypassing the SW audio engine, and another by

directly doing HW offload [52].

We did experiments on audio playback to verify the impact of power on IP blocks.

Figure 7.16 shows the power delta savings in watts when using audio IP unit offload

compared to without offload. The approximate power savings observed by playing a

48-KHz audio file was 350 mW. It is significant since it can give between 10 and 15

minutes more listening during playback.

Most of the savings happens due to dedicated processing of the work. IP block

helped to reduce the CPU’s wake-ups and continued processing the audio stream

without wake-up. Figure 7.15 shows CPU wake-up sampled at every 1 msec using

Event tracing for Windows logs. The red line represents wake-ups without offloading,

while the blue shows when audio offload is enabled. The impact of power during

www.manaraa.com

227

Software-Based Estimation DAQ-Based Estimation

CPU → GPU Offload Savings 4.1 4.19

GPU → CPU Concurrency 0.08 0.239

GPU → CPU Overlapping 0.01 0.129

Table 7.1: Estimation of power variance using software- and hardware-based tools.

continuous playing without a pre-buffer shows offloading to a dedicated IP unit can

help the CPU to go into a deep-power sleep state and even power off completely until

the IP unit complete the processing.

7.6 Analysis and Conclusion

In this chapter, we presented studies on using SoC and platform IP offload. This chap-

ter shows the need for low-power sophisticated measurement tools to understand the

impact of a low-power IP unit available on the platform. We also showed that using

only an IP unit will not result in optimal power optimization; therefore, there is still

a need for optimization that can be achieved by proper alignment of CPU activities

with IP block activities. Optimization can only be captured by DAQ instrumenta-

tion instead of software-based calculation. Compared to software-based solutions for

low-power measurement, DAQ provides accuracy and less variance. Results show

12% error as we move to low-power SoC when we use software-based measurements

compared to the DAQ because current software-measurement tools can miss a small

IP unit.

As future work, we plan to investigate how to incorporate low-cost, power-friendly

techniques such as buffering the hardware counter before it flushes the data to disk.

We will also investigate automatic energy-saving measures on IPs on the platform

using low-cost overhead software counters or DAQ.

www.manaraa.com

228

Figure 7.13: Microsoft audio block diagram.

www.manaraa.com

229

Figure 7.14: Error graph on low-power SoC savings.

Figure 7.15: Overtime view for audio activities.

Figure 7.16: Delta of power savings achieved by offloading.

www.manaraa.com

230

CHAPTER 8: CONCLUSION

AND FUTURE WORK

In this Ph.D. dissertation, we presented our research accomplishments in the field

of energy efficiency of mobile devices. We presented energy overhead analysis of

mobile devices and a survey of relevant literature to lay the foundation of our work.

We focused in this dissertation on the energy-efficiency analysis of mobile devices.

Through our analysis, we were able to identify several issues that contributed to

the energy inefficiencies of mobile devices and proposed optimization techniques. In

addition, our analysis enabled us to provide application development techniques which

can increase the energy efficiency of mobile apps. Moreover, we developed three tools.

The first tool is SoftPowerMon, which can power profile Android platforms in order to

expose the power consumption behavior of the CPU. The second tool is EnergyMeter,

which can collect the energy consumption of Windows platforms, in addition to the

energy consumption of package, cores, and GPU of HASWELL ULT chipset. The

third tool is BatteryExtender, an adaptive user-guided tool for power management

of mobile devices. The tool enables users to extend battery life on demand for a

specific duration until a particular task is performed. Finally, we examined the power

consumption of Systems-on-Chips (SoCs) and observed the impact of offloading tasks,

from the CPU to the specialized custom engines, on the energy efficiency. Based on

our case studies, we were able to showcase that current software-based power profiling

techniques for SoCs can have an error rate close to 12%.

Even though our contribution to increase the energy efficiency of mobile devices is

significant, there is still opportunity for further optimization of the energy efficiency

of mobile devices. In particular, we aim to pursue the following research directions

in the future:

www.manaraa.com

231

• We are planning on improving our BatteryExtender tool by improving our re-

source power-consumption estimation by continuously profiling the platform

when battery life is not an important resource for the user.

• Battery life is a significantly important resource and users tend to evaluate

devices based on their expected battery life. However, battery consumption is

not strictly a hardware issue, but an app issue as well. Yet, there are no tools

that can rank apps based on their energy efficiency as it is common to rank

hardware devices based on their energy efficiency. As a result, we are planning

to develop a tool which can automatically energy profile apps and rank them

in terms of their energy efficiency.

• We are also planning on developing a software-based tool to power profile the

SoC devices with very low error rate. Then, using our profiling tool, we can

identify further energy inefficiency causes and attempt to solve them.

• Wearable technology is becoming the hot new technology. This too has a very

limited power sources. As a result, we are planning to use the knowledge gained

from developing power profiling tools for the SoC with high precision; then we

can use that knowledge to create tools specifically for wearable technology.

• We exposed in our case studies the energy inefficiency of mobile web applica-

tion compared to native apps. However, since creating native apps for multiple

operating systems can be costly for organizations, we are planning to find opti-

mization techniques in order to reduce the gap between the energy consumption

of native versus web apps.

www.manaraa.com

REFERENCES

[1] https://developer.apple.com/library/mac/##documentation/

developertools/conceptual/InstrumentsUserGuide/Introduction/

Introduction.html.

[2] http://code.google.com/p/iptableslog/.

[3] http://www.3c71.com/android/?q=node/1##main-content-area.

[4] http://android.nextapp.com/site/systempanel.

[5] 2013 roundup of smartphone and tablet forecasts and market esti-

mates. http://www.forbes.com/sites/louiscolumbus/2013/01/17/

2013-roundup-of-mobility-forecasts-and-market-estimates/.

[6] 2640a/2645a netdaq networked data acquisition unit user manual. http://

www.testequipmentdepot.com/fluke/pdf/netdaq_manu.pdf.

[7] About instruments. https://developer.apple.com/library/mac/

documentation/developertools/conceptual/instrumentsuserguide/

Introduction/Introduction.html.

[8] About the ios technologies. https://developer.apple.com/library/

ios/documentation/miscellaneous/conceptual/iphoneostechoverview/

Introduction/Introduction.html.

[9] Amazon unbox vido player. http://www.amazon.com/gp/video/ontv/player.

[10] Device power management. http://msdn.microsoft.com/en-us/library/

windows/hardware/dn495664(v=vs.85).aspx.

[11] Event tracing. http://msdn.microsoft.com/en-us/library/windows/

desktop/bb968803(v=vs.85).aspx.
232

www.manaraa.com

233

[12] Google v8 benchmark suite. http://v8.googlecode.com/svn/data/

benchmarks/v5/run.html.

[13] Guidelines for tiles and badges (windows store apps). http://msdn.

microsoft.com/en-us/library/windows/apps/hh465403.aspx.

[14] Instruments users guide. http://developer.apple.com/library/mac/

#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/

Introduction/Introduction.html.

[15] Intel 64 and ia-32 architectures software developers manual com-

bined volumes: 1, 2a, 2b, 2c, 3a, 3b and 3c. http://www.

intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-manual-325462.pdf.

[16] Oprofile. http://oprofile.sourceforge.net/about/.

[17] Power efficient multimedia play back on mobile platforms”, author=Agrawal,

A and Huff, T and Potluri, S and Cheung, A, and Thaku, A and Holland, H,

booktitle=”intel tech nology journal”, volume=15, issue=2, year=2011.

[18] Push notification overview (windows store apps). http://msdn.microsoft.

com/en-us/library/windows/apps/hh913756.aspx.

[19] Sunspider javascript benchmark. http://www.webkit.org/perf/sunspider/

sunspider.html.

[20] Trepn profiler. https://developer.qualcomm.com/mobile-development/

increase-app-performance/trepn-profiler.

[21] Why apple’s 2014 won’t be like 2013. http://news.cnet.com/8301-13579_

3-57615293-37/why-apples-2014-wont-be-like-2013/.

www.manaraa.com

234

[22] Windows performance analyzer. http://msdn.microsoft.com/en-us/

library/windows/hardware/hh448170.aspx.

[23] Windows performance recorder. http://msdn.microsoft.com/en-us/

library/windows/hardware/hh448205.aspx.

[24] Worldwide smartphone markets: 2011 to 2015. http://www.

researchandmarkets.com/research/7a1189/worldwide_smart, 2011.

[25] Nena Innovation AB. Nenamark2. http://nena.se/nenamark/view?version=

2.

[26] Ahmed Abdelmotalib and Zhibo Wu. Power consumption in smartphones (hard-

ware behaviourism). International Journal of Computer Science Issues (IJCSI),

2012.

[27] Kevin Ashton. That internet of things thing. RFiD Journal, 22:97–114, 2009.

[28] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatara-

mani. Energy consumption in mobile phones: a measurement study and im-

plications for network applications. In Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference, pages 280–293. ACM, 2009.

[29] Frank Bellosa. The benefits of event: driven energy accounting in power-

sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS Euro-

pean workshop: beyond the PC: new challenges for the operating system, pages

37–42. ACM, 2000.

[30] Fehmi Ben Abdesslem, Andrew Phillips, and Tristan Henderson. Less is more:

energy-efficient mobile sensing with senseless. In Proceedings of the 1st ACM

workshop on Networking, systems, and applications for mobile handhelds, pages

61–62. ACM, 2009.

www.manaraa.com

235

[31] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. volume 28, pages 83–94.

ACM, 2000.

[32] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a

smartphone. In Proceedings of the 2010 USENIX conference on USENIX annual

technical conference, pages 21–21, 2010.

[33] ARM Info Center. Cortex a-9 technical reference manual. http:

//infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_

cortex_a9_r4p1_trm.pdf.

[34] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin

Patti. Clonecloud: elastic execution between mobile device and cloud. In

Proceedings of the sixth conference on Computer systems, pages 301–314. ACM,

2011.

[35] Sunny Consolvo, David W McDonald, Tammy Toscos, Mike Y Chen, Jon

Froehlich, Beverly Harrison, Predrag Klasnja, Anthony LaMarca, Louis

LeGrand, Ryan Libby, et al. Activity sensing in the wild: a field trial of

ubifit garden. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 1797–1806. ACM, 2008.

[36] Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. Android power

management: Current and future trends. In Enabling Technologies for Smart-

phone and Internet of Things (ETSIoT), 2012 First IEEE Workshop on, pages

48–53. IEEE, 2012.

[37] Android developers. Android debug bridge. http://developer.android.com/

tools/help/adb.html.

[38] Thanh Do, Suhib Rawshdeh, and Weisong Shi. ptop: A process-level power

profiling tool, 2009.

www.manaraa.com

236

[39] Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power modeling of graph-

ical user interfaces on oled displays. In Proceedings of the 46th Annual Design

Automation Conference, pages 652–657. ACM, 2009.

[40] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling

for battery-powered mobile systems. In Proceedings of the 9th international

conference on Mobile systems, applications, and services, pages 335–348. ACM,

2011.

[41] Elephant Dreams. Elephant dreams. http://www.elephantsdream.org/,

2013.

[42] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M Blackburn, and Kathryn S

McKinley. Looking back on the language and hardware revolutions: measured

power, performance, and scaling, 2011.

[43] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula,

and Deborah Estrin. A first look at traffic on smartphones. In Proceedings of

the 10th ACM SIGCOMM conference on Internet measurement, pages 281–287.

ACM, 2010.

[44] Hossein Falaki, Ratul Mahajan, and Deborah Estrin. Systemsens: a tool for

monitoring usage in smartphone research deployments. In Proceedings of the

sixth international workshop on MobiArch, pages 25–30. ACM, 2011.

[45] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,

Ramesh Govindan, and Deborah Estrin. Diversity in smartphone usage. In

Proceedings of the 8th international conference on Mobile systems, applications,

and services, pages 179–194. ACM, 2010.

[46] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A tool for profiling

the energy usage of mobile applications, 1999.

www.manaraa.com

237

[47] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and

Xu Chen. Comet: code offload by migrating execution transparently. In Pro-

ceedings of the 10th USENIX conference on Operating Systems Design and Im-

plementation, OSDI, volume 12, pages 93–106, 2012.

[48] Tor-Morten Grønli, Jarle Hansen, and Gheorghita Ghinea. Android vs windows

mobile vs java me: a comparative study of mobile development environments.

In Proceedings of the 3rd International Conference on PErvasive Technologies

Related to Assistive Environments, page 45. ACM, 2010.

[49] Tor-Morten Grønli, Jarle Hansen, and Gheorghita Ghinea. A cloud on the

horizon: the challenge of developing applications for android and iphone. In

Proceedings of the 4th International Conference on PErvasive Technologies Re-

lated to Assistive Environments, page 64. ACM, 2011.

[50] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, Narayanan

Vijaykrishnan, and Mahmut Kandemir. Using complete machine simulation for

software power estimation: The softwatt approach, 2002.

[51] Hao Han, Yunxin Liu, Guobin Shen, Yongguang Zhang, and Qun Li. Dozyap:

power-efficient wi-fi tethering. In Proceedings of the 10th international confer-

ence on mobile systems, applications, and services, pages 421–434. ACM, 2012.

[52] Windows Dev Center Hardware. Hardware offload of audio processing test

(system). http://msdn.microsoft.com/en-us/library/windows/hardware/

hh997936.aspx/, 2013.

[53] Windows Dev Center Hardware. Using gpuview. http://msdn.microsoft.

com/en-us/library/windows/hardware/ff570133(v=vs.85).aspx/, 2013.

[54] Gael Hofemeier. Ultrabook and tablet windows* 8 sensors de-

velopment guide. http://software.intel.com/en-us/articles/

ultrabook-and-tablet-windows-8-sensors-development-guide, 2013.

www.manaraa.com

238

[55] Nick Honetschlager. Mobile applications in android.

[56] Kishonti Informatics. Glbenchmark. http://gfxbench.com/result.jsp.

[57] Texas Instrumentation. Data acquisition with pxi and pxi express. http:

//www.ni.com/data-acquisition/pxi/, 2013.

[58] Intel. 4th generation intel core i5 processor. http://www.intel.com/content/

www/us/en/processors/core/core-i5-processor.html, 2013.

[59] Wonwoo Jung, Chulkoo Kang, Chanmin Yoon, Donwon Kim, and Hojung Cha.

Devscope: a nonintrusive and online power analysis tool for smartphone hard-

ware components. In Proceedings of the eighth IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, pages 353–362.

ACM, 2012.

[60] J.Y. Kang, M.J. Park, C. Lee, and S.G. OH. User interface method and appa-

ratus therefor, January 9 2014. US Patent App. 13/928,919.

[61] Aman Kansal, Scott Saponas, AJ Brush, Kathryn S McKinley, Todd Mytkow-

icz, and Ryder Ziola. The latency, accuracy, and battery (lab) abstraction:

programmer productivity and energy efficiency for continuous mobile context

sensing. In Proceedings of the 2013 ACM SIGPLAN international conference on

Object oriented programming systems languages & applications, pages 661–676.

ACM, 2013.

[62] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware

application design, 2008.

[63] Kyu-Han Kim, Alexander W Min, Dhruv Gupta, Prasant Mohapatra, and

Jatinder Pal Singh. Improving energy efficiency of wi-fi sensing on smartphones.

In INFOCOM, 2011 Proceedings IEEE, pages 2930–2938. IEEE, 2011.

www.manaraa.com

239

[64] Marcello Lajolo, Anand Raghunathan, Sujit Dey, and Luciano Lavagno. Ef-

ficient power co-estimation techniques for system-on-chip design. In Design,

Automation and Test in Europe Conference and Exhibition 2000. Proceedings,

pages 27–34. IEEE, 2000.

[65] Marcello Lajolo, Anand Raghunathan, Sujit Dey, and Luciano Lavagno.

Cosimulation-based power estimation for system-on-chip design. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 10(3):253–266, 2002.

[66] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choud-

hury, and Andrew T Campbell. A survey of mobile phone sensing. Communi-

cations Magazine, IEEE, 48(9):140–150, 2010.

[67] Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. Calculating

source line level energy information for android applications. 2013.

[68] Frank Maker, Rajaveen Amirtharajah, and Venkatesh Akella. Update rate

tradeoffs for improving online power modeling in smartphones. In Low Power

Electronics and Design (ISLPED), 2013 IEEE International Symposium on,

pages 114–119. IEEE, 2013.

[69] Dustin McIntire, Thanos Stathopoulos, and William Kaiser. etop-sensor net-

work application energy profiling on the leap2 platform, 2007.

[70] G. Metri, M. Sabharwal, S. Iyer, and A. Agrawal. Hardware/software codesign

to optimize soc device battery life. Computer, 46(10):89–92, October 2013.

[71] Grace Metri, Abhishek Agrawal, Ramesh Peri, Monica Brockmeyer, and

Weisong Shi. A simplistic way for power profiling of mobile devices. In Energy

Aware Computing, 2012 International Conference on, pages 1–6, Dec 2012.

www.manaraa.com

240

[72] Grace Metri, Abhishek Agrawal, Ramesh Peri, and Weisong Shi. What is eating

up battery life on my smartphone: A case study. In Energy Aware Computing,

2012 International Conference on, pages 1–6. IEEE, 2012.

[73] Antti P Miettinen and Jukka K Nurminen. Energy efficiency of mobile clients in

cloud computing. In Proceedings of the 2nd USENIX conference on Hot topics

in cloud computing, pages 4–4. USENIX Association, 2010.

[74] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers

to estimate app energy consumption. In Proceedings of the 18th annual interna-

tional conference on Mobile computing and networking, pages 317–328. ACM,

2012.

[75] M Motlhabi. Advanced android power management and implementation of

wakelocks. University of the Western Cape. Paper available online: http://www.

cs. uwc. ac. za/˜ mmotlhabi/apm2. pdf (nd), 2008.

[76] Adrian Mullally, Nigel McKelvey, and Kevin Curran. Performance comparison

of enterprise applications on mobile operating systems. Telkomnika, 9(3), 2011.

[77] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah

Estrin, Mark Hansen, Eric Howard, Ruth West, and Péter Boda. Peir, the

personal environmental impact report, as a platform for participatory sensing

systems research. In Proceedings of the 7th international conference on Mobile

systems, applications, and services, pages 55–68. ACM, 2009.

[78] Adam Oliner, Anand Padmanabha Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu

Tarkoma. Carat: Collaborative energy diagnosis for mobile devices. 2013.

[79] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where is the energy spent

inside my app?: fine grained energy accounting on smartphones with eprof. In

Proceedings of the 7th ACM european conference on Computer Systems, pages

29–42. ACM, 2012.

www.manaraa.com

241

[80] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.

Fine-grained power modeling for smartphones using system call tracing. In

Proceedings of the sixth conference on Computer systems, pages 153–168. ACM,

2011.

[81] Gian Paolo Perrucci, Frank HP Fitzek, and Jörg Widmer. Survey on energy

consumption entities on the smartphone platform. In Vehicular Technology

Conference (VTC Spring), 2011 IEEE 73rd, pages 1–6. IEEE, 2011.

[82] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Morley Mao, Sub-

habrata Sen, and Oliver Spatscheck. Characterizing radio resource allocation

for 3g networks. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 137–150. ACM, 2010.

[83] Freeman Rawson and IBM Austin. Mempower: A simple memory power anal-

ysis tool set. IBM Austin Research Laboratory, 2004.

[84] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A com-

parison of high-level full-system power models. HotPower, 8:3–3, 2008.

[85] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and

Eliezer Weissmann. Power-management architecture of the intel microarchitec-

ture code-named sandy bridge, 2012.

[86] M. Sabharwal, A. Agrawal, and G. Metri. Enabling green it through energy-

aware software. IT Professional, 15(1):19–27, 2013.

[87] M. Sabharwal, G. Metri, Chao Huang, and A. Agrawal. Towards fine grain

power profiling tools for soc based mobile devices. In Energy Aware Computing

Systems and Applications (ICEAC), 2013 4th Annual International Conference

on, pages 87–92, Dec 2013.

www.manaraa.com

242

[88] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: studying

real user activity patterns to guide power optimizations for mobile architectures,

2009.

[89] Alex Shye, Benjamin Scholbrock, Gokhan Memik, and Peter A Dinda. Charac-

terizing and modeling user activity on smartphones: summary. In ACM SIG-

METRICS Performance Evaluation Review, volume 38, pages 375–376. ACM,

2010.

[90] Suresh Siddha, Venkatesh Pallipadi, and AVD Ven. Getting maximum mileage

out of tickless. In Linux Symposium, volume 2, pages 201–207. Citeseer, 2007.

[91] Intel Software. Intel media sdk 2013. http://software.intel.com/en-us/

vcsource/tools/media-sdk, 2013.

[92] Charles Sterling. Energy consumption tool in visual studio 2013.

http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/10/

energy-consumption-tool-in-visual-studio-2013.aspx, 2013.

[93] Sasu Tarkoma and Eemil Lagerspetz. Arching over the mobile chasm: Platforms

and runtimes. Computer, 2010.

[94] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden,

Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson. Vtrack: accurate, energy-

aware road traffic delay estimation using mobile phones. In Proceedings of the

7th ACM Conference on Embedded Networked Sensor Systems, pages 85–98.

ACM, 2009.

[95] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and

Jatinder Pal Singh. Who killed my battery?: analyzing mobile browser energy

consumption. In Proceedings of the 21st international conference on World

Wide Web, pages 41–50. ACM, 2012.

www.manaraa.com

243

[96] Olivier Tremblay and Louis-A Dessaint. Experimental validation of a battery

dynamic model for ev applications. World Electric Vehicle Journal, 3:13–16,

2009.

[97] Narseo Vallina-Rodriguez, Pan Hui, Jon Crowcroft, and Andrew Rice. Exhaust-

ing battery statistics: understanding the energy demands on mobile handsets.

In Proceedings of the second ACM SIGCOMM workshop on Networking, sys-

tems, and applications on mobile handhelds, pages 9–14. ACM, 2010.

[98] Narayanan Vijaykrishnan, M Kandemir, Mary Jane Irwin, Hyun Suk Kim,

and Wu Ye. Energy-driven integrated hardware-software optimizations using

simplepower, 2000.

[99] Chengke Wang, Fengrun Yan, Yao Guo, and Xiangqun Chen. Power estimation

for mobile applications with profile-driven battery traces. In Low Power Elec-

tronics and Design (ISLPED), 2013 IEEE International Symposium on, pages

120–125. IEEE, 2013.

[100] Spyros Xanthopoulos and Stelios Xinogalos. A comparative analysis of cross-

platform development approaches for mobile applications. In Proceedings of the

6th Balkan Conference in Informatics, pages 213–220. ACM, 2013.

[101] Z Yang. Powertutor–a power monitor for android-based mobile platforms.

EECS, University of Michigan, retrieved September, 2, 2012.

[102] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishna-

murthy, and Randolph Y Wang. Modeling hard-disk power consumption. In

FAST, volume 3, pages 217–230, 2003.

[103] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick,

Zhuoqing Morley Mao, and Lei Yang. Accurate online power estimation and

automatic battery behavior based power model generation for smartphones,

2010.

www.manaraa.com

244

ABSTRACT

ENERGY-EFFICIENCY ANALYSIS AND OPTIMIZATION FOR
MOBILE PLATFORMS

by

GRACE CAMILLE METRI

August 2014

Co-Advisor: Dr. Monica Brockmeyer

Co-Advisor: Dr. Weisong Shi

Major: Computer Science

Degree: Doctor of Philosophy

The introduction of mobile devices changed the landscape of computing. Gradu-

ally, these devices are replacing traditional personal computer (PCs) to become the

devices of choice for entertainment, connectivity, and productivity. There are cur-

rently at least 45.5 million people in the United States who own a mobile device, and

that number is expected to increase to 1.5 billion by 2015.

Users of mobile devices expect and mandate that their mobile devices have max-

imized performance while consuming minimal possible power. However, due to the

battery size constraints, the amount of energy stored in these devices is limited and

is only growing by 5% annually. As a result, we focused in this dissertation on energy

efficiency analysis and optimization for mobile platforms. We specifically developed

SoftPowerMon, a tool that can power profile Android platforms in order to expose the

power consumption behavior of the CPU. We also performed an extensive set of case

studies in order to determine energy inefficiencies of mobile applications. Through our

case studies, we were able to propose optimization techniques in order to increase the

energy efficiency of mobile devices and proposed guidelines for energy-efficient app de-

velopment. In addition, we developed BatteryExtender, an adaptive user-guided tool

for power management of mobile devices. The tool enables users to extend battery

www.manaraa.com

245

life on demand for a specific duration until a particular task is completed. Moreover,

we examined the power consumption of System-on-Chips (SoCs) and observed the

impact on the energy efficiency in the event of offloading tasks from the CPU to the

specialized custom engines. Based on our case studies, we were able to demonstrate

that current software-based power profiling techniques for SoCs can have an error

rate close to 12%, which needs to be addressed in order to be able to optimize the

energy consumption of the SoC. Finally, we summarize our contributions and outline

possible direction for future research in this field.

www.manaraa.com

246

AUTOBIOGRAPHICAL STATEMENT

Grace Metri is a Ph.D. candidate at the Department of Computer Science at Wayne

State University where she received her M.S. in Computer Science in 2010 and B.S. in

Computer Science with a minor in Business in 2006. Her research interests are power

and energy profiling tools for mobile devices, power management in data centers,

energy efficient software, and increasing energy efficiency of data centers and mobile

devices. She published several papers in different venues, including IEEE Computer

Magazine, IT Pro Magazine, Energy Aware Computing Systems and Applications

(ICEAC), and IEEE Cloud. Her work experience include both academia and industry.

She was a Graduate Teaching Assistant for several years and worked as a lecturer for

one academic year. She also worked as a Software Engineer at Thomson Reuters

before joining Intel to work on research related to power and energy profiling of

mobile devices.

	Wayne State University
	1-1-2014
	Energy Efficiency Analysis And Optimization For Mobile Platforms
	Grace Metri
	Recommended Citation

